
Comparison Study of Aspect-oriented and Container
Managed Security

Paweł Słowikowski, Krzysztof Zieliński
AGH University of Science and Technology

keywords: aspects, AspectJ, security, J2EE

Introduction
The goal of the paper is to present that aspect-oriented security provides very powerful
mechanisms which could enhance container managed security. Security of container based
systems usually depends on security mechanisms provided by containers in which the
components run. The security functionality of containers is often limited and hard to modify.
Aspect-oriented programming (AOP) allows weaving a security aspect into a component
based application providing additional security functionality or introducing completely new
security mechanisms. Implementation of security with AOP is a flexible method to develop
separated, extensible and reusable pieces of code called aspects.
In this paper we discuss some specific security solutions based on Java 2 Enterprise Edition
(J2EE) architecture [1] and JBoss 3.0 application server [2], aspect-oriented programming
with AspectJ 1.1 [3], Java Authentication and Authorization Service API (JAAS) [4] and
Resource Access Decision Facility (RAD) [5]. First, the security requirements in component
based systems have been discussed. Next, container managed and aspect-oriented security
mechanisms are presented in more details. Then, to demonstrate and compare techniques of
implementation of different security mechanisms we will use a simplified pseudo-banking
application (written with EJB).

Security requirements in component based systems
Security is a very important issue in enterprise-class information systems, especially in
portal/Internet applications. It is related to a possibly huge quantity of sensitive resources in
the system and potentially unlimited users’ access to the application. A violation of security
may cause catastrophic consequences for organizations whose security-critical information
may be disclosed without authorization, altered, lost, or destroyed.
There are many standards of security functionality requirements for applications [6,7,8]. In
this paper the focus is on the most important security functions:
• identification and authentication: the process of establishing and verifying the claimed

identity of user,
• access control: the prevention of unauthorized use of a resource, including the prevention

of use of a resource in an unauthorized manner,
• accountability: the property that ensures that the actions of an entity may be traced

uniquely to the entity,
• audit: an independent review and examination of system records and activities in order to

test for adequacy of system controls, to ensure compliance with established policy and
operational procedures, and to recommend any indicated changes in control, policy, and
procedures.

In the following sections it will be shown how the above mentioned security issues are
addressed in component based applications with container managed security and how they
can be addressed by applying aspect-oriented programming.

 1

Container managed security
Container managed security is a type of security mainly applied in component systems.
Standard examples of such applications are the ones developed in the J2EE architecture. The
container implements the security infrastructure and the component is free of security logic.
This implies that security functionality of application is limited to security provided by the
container. The application servers allow managing security policy on the level of user and his
role in a system on the one hand, and on the level of access control to invoking methods on
the other hand. There are no standard mechanisms to control access to the methods depending
on method’s arguments or to hide parts of the result. The security is on the level of classes,
but not on the level of instances. It is also not possible to force access control based on other
properties such as the time of day or physical location.
The standard security in the J2EE architecture is declarative security. The information about
application’s security configuration is located in the deployment descriptor external to the
application. Since the security mechanisms are not hard coded in the component, the security
policy of application can be set up during deployment without the need to modify the code of
the components. The following example illustrates how to enforce an EJB container to restrict
access to BankEJB only to principals (users) that are permitted the Client role. The component
BankEJB doesn’t require to be changed or recompiled.

<session>
 <ejb-name>Bank</ejb-name>
 <ejb-class>BankEJB</ejb-class>
...
 <security-role-ref>
 <role-name>Client</role-name>
 </security-role-ref>
...
</session>

Listing 1 Part of an application descriptor providing declarative security

Declarative security can be completed with programmatic security. Programmatic security
allows adding some code providing security inside the code of components. The code is able
to obtain security information from a container but that information is limited to the principal
and his security role. Implementation of security directly inside the component is time-
consuming and requires the provider of container’s business logic to have excellent
knowledge of security mechanisms and security policy the application should satisfy. Some
J2EE product providers extend security functionality of their application servers but in that
case applications utilizing new features are not portable to other application servers and
components are mostly not reusable. Both declarative security and programmatic security
don’t support the cooperation with application servers other then the J2EE ones.

Aspect-oriented security
Security is hard to implement correctly with traditional programming techniques. AOP offers
a new approach to the problem. The AOP concept assumes separation of crosscutting
concerns and moving them into separate and independent modules called aspects. Object-
oriented technique allows separating concerns that could be mapped to concrete objects. It is
hard to separate more abstract and complex properties of the system that cut across many
other units of modularity. An example of such concern is security. Aspects allow us to
precisely and selectively define objects, methods and events the security should be applied to.
AspectJ is an aspect-oriented extension to Java. It enhances Java language with aspects
features such as possibility to define events in the execution of program (called pointcuts) and
actions (called advices) that execute at join points picked out by a pointcut. AspectJ also

 2

allows to modify classes and their hierarchy by adding new members to classes and alters the
inheritance relationship between classes. Aspects can affect both source code and compiled
classes. The second case is very important if we want to apply aspects to components which
are packages of compiled classes. That solution gives us possibility to enhance existing or add
completely new security functionality to the component without having to modify sources.
The code implementing security is separated from implementation of components’ business
logic. Implementing security for J2EE applications with AspectJ we can use functionality
provided by the container as well as any available external security library.

Comparison of security implementation techniques
This section presents examples of implementation of authentication, access control,
accountability, and audit for J2EE application. The examples serve to compare container
managed and aspect-oriented security.

Identification and authentication
In our examples authentication is based on JAAS. In order to authenticate the client
application we have to initialize the security manager: configure a login module, create an
instance of LoginContext, and log in [9]. Listing 2 shows implementation of authentication
in pure Java. Authentication takes place just after running the client application. The code
marked in gray is required to authenticate the client of bank component.

class BankClient {

LoginContext lc = null;

public static void main(String[] args) {
// Callback to get username and password. Required by LoginContext

 AppCallbackHandler handler = new AppCallbackHandler("scott", "echoman");

 try {
 lc = new LoginContext("Bank", handler);
 lc.login();
 } catch(LoginException e) {
// ...
 }
// ...

 BankHome homeBank = (BankHome) ctx.lookup("ejb/Bank");
 Bank bank = homeBank.create();
 System.out.println(bank.getAccountInfo("bill"));

// ...
 try {
 lc.logout();

 } catch(LoginException e) {
// ...
 }
 }
}

Listing 2 Authentication of a client application with pure Java

We can achieve analogous functionality with AspectJ as shown in the following listing.

class BankClient {

public static void main(String[] args) {
// ...

 BankHome homeBank = (BankHome) ctx.lookup("ejb/Bank");
 Bank bank = homeBank.create();
 System.out.println(bank.getAccountInfo("bill"));

// ...
 }
}

aspect BankAspect {
 LoginContext lc = null;

 3

 pointcut mainExecution():
 execution(public static void main(..));

// Login before execution of main()
 before(): mainExecution() {
 AppCallbackHandler handler = new AppCallbackHandler("scott", "echoman");
 try {
 lc = new LoginContext("Bank", handler);
 lc.login();
 } catch(LoginException e) {
// ...
 }
 }

// Logout after execution of main()
 after() returning: mainExecution() {
 try {
 lc.logout();
 } catch(LoginException e) {
// ...

 }
 }
}

Listing 3 Authentication of a client application with AspectJ

The part of application providing the authentication mechanism is placed in the aspect. The
code providing security is separated from the remaining code of application.

Access control
Access control is a server-side mechanism. After invoking a method the decision has to be
made whether the method is allowed to be executed or not. In the case of container managed
and declarative type of security the decision is made by container based on an application
descriptor as it was shown in Listing 1. The container that makes a decision about access to
the component allows for principal identifying the client, client’s security roles, and roles
required to get access to the component or its methods. It is not possible to base access control
on values of method’s arguments, the time of the day, or the physical location of the caller. In
that case it is possible to apply programmatic security and use some limited security
information obtained from the container but then access control has to be hard coded inside
the component.
Let’s presume that we have an external access control server with regard to the application
server and we want to base authorization on that server. The authorization server is
compatible with RAD specification, so an authorization decision depends on: the resource we
want to access, operation on the resource, and credentials of the request’s caller. The
following listings show how RAD based access control could be implemented with and
without aspects:

class BankEJB implements SessionBean {
 public String getAccountInfo(String customer) {
// access control
// get instance of RADConfig to prepare parameters for access_allowed()
 RADConfig radConfig = RADConfig.getInstance();
// prepare an instance of ResourceName to identify the customer’s account
 ResourceName resourceName = radConfig.getResourceName(
RADConfig.CUSTOMER_ACCOUNT, customer);
// prepare the operation that is performed on the resource
 String operation = radConfig.getOperation("getAccountInfo");
// prepare user’s security credentials
 SecAttribute[] attributeList = radConfig.getSecAttributes(SecAttribute.USER,
context.getCallerPrincipal().getName());
// get reference to the RAD service
 RAD rad = RADLocator.getInstanceOfRAD();
// make an access decision
 if (!rad.access_allowed(resourceName, operation, attributeList)) {
// do something if access has been denied

 4

 }
// ...
// main functionality
 }
}

Listing 4 RAD based access control with pure Java

class BankEJB implements SessionBean
{
 public String getAccountInfo(String customer) {
// main functionality
 }
}

privileged aspect BankAspect {
 pointcut bankMethodsInvocation(String customer):
 execution(String getAccountInfo(String)) && args(customer);

 Object around(String customer, SessionBean obj): bankMethodsInvocation(customer) &&
 this(obj) {
// access control
 RADConfig radConfig = RADConfig.getInstance();
 ResourceName resourceName = radConfig.getResourceName(
RADConfig.CUSTOMER_ACCOUNT, customer);
 String operation = radConfig.getOperation(
thisJoinPointStaticPart.getSignature().getName());
 SecAttribute[] attributeList = radConfig.getSecAttributes(SecAttribute.USER,
((BankEJB)obj).context.getCallerPrincipal().getName(););
 RAD rad = RADLocator.getInstanceOfRAD();
 if (!rad.access_allowed(resourceName, operation, attributeList)) {
// do something if access has been denied
 } else
 return proceed(customer, obj);
 }
}

Listing 5 RAD based access control with AspectJ

As in the case of authentication with AspectJ, the code providing access control using this
technique is separated and independent from the rest of application. Any change to the
security mechanism would require a modification only in the aspect code. If we implemented
access control without aspects and had to change existing security mechanism, we would have
to modify code of every component we had secured earlier.

Accountability and audit
Accountability and audit serve to collect and analyze the activity of the information system.
They aim at detection of security violations and defining their causes. Although accountability
and audit are very important parts of security, there is no standard mechanism to solve the
issue. Usually accountability is reduced to logging to a text file and audit is omitted at all. The
J2EE containers don’t provide any standard functionality related to accountability and audit.
The problem could be solved with programmatic security but this would require modification
of component’s sources. Accountability and audit belong to the category of concerns that can
be easily implemented with aspects. The problem can be solved similarly to the access control
issue. The following listing shows how accounting could be implemented with usage of
aspects. The methods will be logged if they throw any exception of a given type.

aspect BankAspect {
 pointcut bankMethods():
 execution(public * bank.*(..)) && this(SessionBean);

// Log information after throwing BankSecurityException from SessionBeans which belong to the
bank package
 after() throwing (BankSecurityException e): bankMethods() {

 Log log = Log.getInstance();
 log.write(e);

 5

 }
}

Listing 6 Accountability with AspectJ

mented but in that case the information should be directed

he brief comparison of a container-managed and aspect-oriented security is shown in the

Analogously audit could be imple
to some audit module i.e. an intrusion detection module.

T
following table:

 Container managed security
Security mechanism Declarative security

Aspect-oriented security
security Programmatic

Identification and L Lim er No modification of component’s
authentication

imited to container
functionality

ited to contain
functionality code required

Access control Limited to container odification of n of component’s
functionality

Required m
component’s code

No modificatio
code required

No standard s Required modific
component’s code

No modificatio
code required

Required modificat
component’s code

No modificatio
code required

nd aspect-oriented

Accountability olution ation of n of component’s

Audit Not supported ion of n of component’s

Table 1 Comparison of container managed a security

ged and aspect-oriented security have its pros and cons. Container

un web site, http://java.sun.com/j2ee

Conclusions
Both container mana
managed security frees the application developer from implementing security mechanisms by
himself and leaves definition of application’s security properties to the security expert.
Application‘s security properties are defined only in the application deployment descriptor.
On the other hand we are limited to security functionality of the container. It is often not
enough to enforce more complicated and dynamic security polices. We can additionally use
programmatic security but it requires to mix security logic and business logic in each secured
component. The final code is mangled and usually difficult to maintain. More flexible and
extensible solution is to use AspectJ to implement security. This allows creating separated
flexible module responsible for security and weaving it to the non-secured application. That
approach doesn’t require any modification of application’s sources to introduce security. The
best solution seems to be combination of container managed and aspect-oriented security. The
both types of security can be perfectly complementary.

References
[1] J2EE page at S
[2] JBoss web site, http://www.jboss.org
[3] AspectJ web site, http://www.aspectj.org

m/products/jaas/[4] JAAS page at Sun web site, http://java.sun.co

//ww
[5] Resource Access Decision Facility Specification, OMG, 2001.
http: .omg.org/docs/formal/01-04-01.pdf
[6] Security Functionality Requirements, National Institute of Standards and Technology, 1992

97.
dustry,

,
tark. Integrate security infrastructures with JbossSX, JavaWorld, April 2001.

[7] Technical Security Standard for Information Technology (TSSIT), Government of Canada, 19
[8] Information Technology Security Evaluation Criteria (ITSEC), Department of Trade and In
London 1991.
[9] Scott S
http://www.javaworld.com/javaworld/jw-08-2001/jw-0831-jaas.html

 6

http://java.sun.com/j2ee
http://www.jboss.org/
http://www.jboss.org/
http://ww.aspectj.org/
http://java.sun.com/products/jaas/
http://ww.omg.org/docs/formal/01-04-01.pdf

	Introduction
	Security requirements in component based systems
	Container managed security
	Aspect-oriented security
	Comparison of security implementation techniques
	Identification and authentication
	Access control
	Accountability and audit

	Conclusions
	References

