
White Paper www.sun.com

�����������	�
���
�����	��������
��
����������������	������
��
�����
��
�����

 A Technical White Paper

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P1

������������	��	�
Executive Summary..2

Architectural Overview..3

New Performance Technology in the Sun™ ONE Application Server 7.......................6

Web Container...6

Java Technology..6

Performance Testing and Results...9

PushToTest..9

Business Benchmark Performance Testing...9

Test Bed..10

Network Computing Tests..11

Test Bed..11

Sun Performance Testing...12

Applications and User Types...12

Server Functionality..13

Results...14

EJB Component Performance Benchmark...16

Test Bed...17

Tuning Tips and Techniques...19

Java™ VM Tuning..19

Web Container...20

EJB Resources and Container...21

EJB Pool..21

EJB Cache...22

EJB Container...22

Infrastructure Tuning...23

CPU Utilization...23

Memory...23

Disk Subsystem Performance..24

Network Subsystem...24

Developer Experience...25

Tightly Coupled Environments...25

Loosely Coupled Environments...25

Assembly and Deployment..25

Simplified Developer Environment...26

Future Directions...27

Performance in Practice — The FETISH Network..29

Summary and Conclusion...31

More Information...32

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P2

����	���������
�
This release of the Sun™ ONE Application Server is based on the reference

implementation of the Java™ 2 Platform, Enterprise Edition (J2EE™) 1.3 version with

significant usability, performance, and scalability improvements to deliver a best-in-class

development and deployment platform. By delivering an implementation of the application

server that is built upon the very definition of the J2EE 1.3 specification, developers,

integrators, and enterprise operators are assured of an environment that maximizes

productivity and performance, while capable of scaling to meet virtually any user load

requirements.

The Sun ONE Application Server 7 is based on a new architecture that is a

significant enhancement to previous Sun application server products. The Sun ONE

Application Server 7 offers a server platform to rapidly and cost-effectively deliver Web

services and other business-critical applications.

Performance improvements that are highlighted in this paper:

� Benchmark testing results from PushToTest show that the Sun ONE Application

Server 7 is nearly twice as fast as leading competitors in transactions per second.

� Network Computing Magazine says: “Its ability to process requests as load increased

made it stand out from the pack.”

� In a continuing effort to improve performance, business benchmark testing results

show that the Sun ONE Application Server 7 PE Edition Update 1 is up to 90 percent

faster than the 7.0 release.

� The Sun ONE Application Server outperformed major competitors in an Enterprise

JavaBeans™ (EJB™) component application environment where a Data Access

Objects (DAO) pattern is used to manage data.

In addition, standards are a major part of the story. The Sun ONE Application Server

7 is in full compliance with key specifications such as JAX RPC 1.03 and other

components of the Java Web Services Developer Pack 1.1. This helps to ensure

portability and protects application and infrastructure investment.

This paper provides details on performance characteristics of the Sun ONE

Application Server 7, including the underlying technologies that help create across-the-

board improvements. Because enterprise applications vary greatly, tuning tips, which can

also help optimize performance, are included. In this release, the developer experience is

streamlined and improved— a chapter discusses the highlights and benefits.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P3

�
���	��	�
������
���
The Sun ONE Application Server 7 provides a robust, J2EE technology-based platform

for the development, deployment, and management of e-commerce application services

to a broad range of servers, clients, and devices. The Sun ONE Application Server 7 is

compliant with J2EE 1.3 technology. Scalability (horizontal and vertical), high availability,

reliability, performance, and standards compliance are the key goals of this architecture.

The software is also a significant architectural departure from previous generations of the

Sun ONE Application Server. Because it combines existing Sun ONE products and

technologies with the J2EE 1.3 Reference Implementation (J2EE 1.3 RI), the Sun ONE

Application Server 7 architecture is built upon proven technologies.

 Figure 1: J2EE Application Architecture

As shown in Figure 1, the J2EE application model is very flexible, allowing the

application architect to split application logic functionally into many tiers. The presentation

layer is typically implemented using servlets and JavaServer Pages™ (JSP™)

components, and executes in the Web container.

The Sun ONE Application Server 7 architecture illustrated in Figure 2 shows the

component architecture, subsystems, access paths, and external entities interfacing with

the core server.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P4

Figure 2: Sun ONE Application Server 7 Components

As Figure 2 illustrates, the Sun ONE Application Server 7 architecture is

componentized, which results in a highly manageable architecture. All the services

required by the J2EE specification are present, with well-defined standard interfaces to

invoke them from within applications.

Application server instances form the basis of an application server deployment. The

J2EE 1.3 Web and EJB containers are included in each application server instance. A

proven, high-performance HTTP server is positioned in front of the Web container, while

a built-in Object Request Broker (ORB) forms the underpinning of the EJB container. In

support of access to backend systems, applications can leverage:

� J2EE Connector Architecture (JCA) support and third-party resource adapters

� Java Message Service (JMS) with either its built-in provider or third-party providers

� Any combination of popular third-party drivers supporting the JDBC™ API

Access to backend systems can be managed within the scope of distributed

transactions using the built-in Java Transaction Manager.

The system is managed through the Administration Server. The Administrative

Server houses the core administrative application and an SNMP agent. All remote

management activity flows through the administrative server. Both command-line and

Web browser-based administrative clients access the administrative server directly

through HTTP, or securely through HTTP/S. The Web based administrative interface, new

in the Sun ONE Application Server 7, provides an easily manageable server from remote

locations, as well. For example, the server is designed such that an administration

domain comprising of one administration server can administer multiple numbers of

application servers.

In addition, a facility is available to configure a Web server installed on a separate

system to act as a proxy and forward the requests to the application server instance. Web

Server Proxy Plug-ins enable application server deployments behind one or more Web

servers, which are housed in a demilitarized zone (DMZ) that is bracketed by one or more

layers of firewalls. The plug-ins provide a means for the front-end, Web server tier to

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P5

direct incoming HTTP/S traffic received from the Internet to one or more application

servers located in a backend application server tier.

A variety of client applications can access business services deployed to the

application server. Web services and browser-based clients can use either HTTP or

HTTP/S to access the Java Web services and J2EE Web applications. Java application

clients can be deployed in a standalone mode or within a standard Application Client

Container. They may use Java Remote Method Invocation over Internet Inter-ORB

Protocol Technology (Java RMI-IIOP Technology) to access EJB components deployed

to the application server. C++ language clients can use Java IDL™/IIOP API to access

EJB components, as well.

The basic component of the Sun ONE Application Server is the appservd process,

which is managed by a watchdog process. The application code runs in a multithreaded

process created by the appservd process. The Java™ Virtual Machine (VM) is also

started within appservd. (The terms Java virtual machine and Java VM mean a virtual

machine for the Java™ platform.)

By employing the Java 2 Platform, Standard Edition (J2SE™) 1.4 technology for the

server operation, the Sun ONE Application Server utilizes the enhanced abilities of this

newer version of the Java Developer Kit (JDK™) to its advantage.

Figure 3: Sun ONE Application Server 7 Offers a
 Streamlined Runtime Environment

�������

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P6

�� ���
��
��������������!�����	��
���"���
��������	������
��
��
The Sun ONE Application Server 7 is a significant rewrite from previous versions of the

application server. In addition to improvements in core application server components,

high-performance subsystems are also included, such as the Sun ONE Web Server 6,

the Sun ONE Message Queue software, and more.

Areas of improvement include:

#������	����

� The Java call stack is reduced, improving scalability.

� The number of times a Web container makes JNI calls is reduced — The JNI connects

the Web container to the native Web server engine.

� ThreadLocal variables ware eliminated in the org.apache (Tomcat) code.

� Using information from various profiling tests, unnecessary string operations are

identified and then reduced or eliminated.

� For JSP components, the number of system calls is reduced. In addition, support for

precompiled JSP components is added. In certain benchmarks, this almost doubles

the performance.

$������������!�

The Sun ONE Application Server 7 provides a J2EE certified platform, and its functionality

and capabilities are based on Java technology. The Sun ONE Application Server 7 has

been optimized to leverage the performance gains mentioned in this section. Additional

information on general Java technology performance can be found at:

java.sun.com/docs/performance.

Java technology improvements include:

� Reflective Method Invocation: The Java programming language can dynamically look

up and call methods. In J2SE 1.4 technology, the mechanism that implements these

features is reimplemented for dramatically improved performance. Figure 4 shows the

relative performance on a simple benchmark that repeatedly calls small methods —

performance is improved by a factor of 20 over J2SE 1.3.1 environments.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P7

Figure 4: Reflective Method Invocation Performance Improvements

� JNI Method Invocation: In addition to the JNI features added to support the non-

blocking I/O (NIO) framework, method calling through JNI is also improved when

calling C-language methods from Java language methods, as well as in the reverse

direction. NIO is an outgrowth of the Java Community Process, specifically JSR 051.

The goal of this specification request is to define a set of new and improved I/O APIs

for the Java platform. Many of these goals relate to improving the I/O performance of

Java APIs. (For more information see java.sun.com/j2se/1.4/performance.guide.html.)

The performance for calling simple native methods in J2SE version 1.4 improved by 74

percent over J2SE version 1.3.1. When calling Java language virtual methods from C,

the performance improved by 38 percent.

� Garbage Collectors: New garbage collector (GC) algorithms have resulted in

performance improvements, as well. In internal testing with middle-tier Java

applications, throughput improved from 14 percent to 93 percent in the Java VM 1.4.2

over the Java VM 1.4.1, depending on the platform.

In addition, two new GCs are available within the Sun ONE Application Server 7. The

Java HotSpot™ VMs are generational. The generational algorithm provides efficient

memory recycling and object aging. The Java VM heap is split into a young generation

and an old generation, according to object age. The young generation is further split

into one Eden and two Survivor spaces. For most applications, two-thirds of allocated

objects die very young, are considered short-term objects, and can be collected in the

young generation. Typically, the young generation is much smaller in size relative to

the total heap size. This leads to frequent but short pauses in the young generation,

but more memory is recovered per unit of collection work. However, objects that

survive a sufficiently large number of young generation collections are considered old

or long-term objects and are promoted or tenured to the old generation. Even though

the old generation is typically larger, it eventually gets filled up and requires collection.

This leads to less frequent but larger pauses in the old generation.

For additional tuning tips, see Tuning Garbage Collection with the 1.4.2 Java Virtual

Machine at: java.sun.com/docs/hotspot/gc1.4.2/index.html

� Throughput Collector: A parallel young generation collection offers superior

scalability on multi-CPU systems. Also known as the parallel collector, it is

implemented in the young generation. This enables garbage collection to occur

on multiple threads for better performance on multiprocessor machines. Even

though it suspends all “mutators” (application threads), it is able to complete the

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P8

given amount of garbage collection work much more quickly, by leveraging all

available CPUs on the system. This significantly reduces the GC pauses in the

young generation. The parallel collector enables applications to scale to larger

number of CPUs, as well as larger memory.

� Short-Pause-Time Collector: A concurrent collection of the tenured generation

dramatically reduces pause times on multi-CPU systems. Also known as the

concurrent low-pause collector, it is implemented in the old generation. This

collector mostly executes concurrently with the application. It trades the

utilization of processing power that would otherwise be available to the

application for shorter garbage collection pause times.

� Thread Management: The thread management used by the Solaris™ Operating

System (OS) implementation of the Java VM offers dramatically improved scalability

and eliminates thread starvation. In a benchmark launching worker threads equal to

the number of CPUs, the threads are now properly load balanced, whereas with J2SE

1.3, certain threads could be starved for minutes at a time. This provides improved

CPU utilization on multi-CPU systems using J2SE version 1.4 with the Solaris 8 OS or

greater.

For more information on threads, see Threading at:

java.sun.com/docs/hotspot/threads/threads.html

� Business Transactions: The Standard Performance Evaluation Corporation offers a

benchmark for evaluating server-side Java performance (SPECjbb2000, or the Java

Business Benchmark). This benchmark models a three-tier system, the most common

type of server-side Java application. SPECjbb2000 focuses on business logic, object

manipulation, and the work of a middle-tier Java server workload. The benchmark

represents a typical business-critical workload, including order entry, inquiry, and

payment processing. The results of this benchmark show a performance improvement

in J2SE version 1.4 of 58 percent over J2SE version 1.3.1. (source:

java.sun.com/j2se/1.4/performance.guide.html)

� Dynamic Native Code Compilation: Numerous improvements were made to the Java

HotSpot Server VM dynamic compiler. Some of the new optimizations include array

bounds check elimination, various loop optimizations, and improved inlining.

� EJB Components: These components are a key element of the J2EE platform, and

J2SE 1.4 shows a 34 percent improvement over J2SE 1.3.1 on a workload that uses

EJB components to simulate a manufacturing and supply chain management

application. Improvements in J2SE 1.4 that impact this workload include object

serialization, thread management, and reflection.

� Java Servlets™: Another key piece of the J2EE platform. Again, J2SE 1.4 substantially

improves performance. In a benchmark using Java Servlets to run an online bookstore,

performance increased by 35 percent. Of particular importance are improvements

made in the Java HotSpot Server VM dynamic compiler.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P9

��
��
���������	��!���%�&����	�
This section describes four performance tests. The tests highlight different areas of the

Sun ONE Application Server 7 performance. Two were external, and two were performed

by an internal group.

���������	

PushToTest is an independent testing organization offering a Performance Kit, which

helps organizations to determine how well an application server performs. Recently,

PushToTest conducted a test using the kit and found that the Sun ONE Application

Server 7 was the fastest at running Web services when compared to application servers

from leading competitors. Table 1 displays the results.

Table 1: PushToTest Testing Results

Sun ONE

Application

Server 7

Competitor A Competitor B

Agents 50 50 50

Number of completed

transactions

7851 3791 3693

Transactions Per Second 43.62 21.18 20.52

The test was centered on Apache SOAP 2.1 making SOAP RPC encoded requests.

The test ran for three minutes, with 50 concurrent test agents making requests.

� Client side: 1.7 GHz AMD XP processor running Windows 2000 SP3.

� Server side: 2x2 GHz AMD MP system running Windows 2000 SP3.

The results make it clear that the Sun ONE Application Server 7 is more than twice

as fast, as measured by transactions per second, than its next-closest competitor.

The PushToTest Suite is available for download at:

www.pushtotest.com/ptt/saskit.html

'��������'������
(���
��
���������	��!

This performance test was performed by Sun engineers in ongoing performance

improvement efforts. Using an industry-standard business benchmark-- an example of a

multitiered business logic benchmark simulating ordering, inventory, and manufacturing

applications--the test shows improvements in the Sun ONE Application Server PE Edition

Update 1 over the release 7.0 version.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P10

Table 2: Business Benchmark Testing Results

Business Benchmark 2001

One Machine Two Machines

Sun ONE Application Server 7.0 100% 121%

Sun ONE Application Server PE Edition Update 1 123% 231%

In an environment where the application server runs on a single machine with a

single instance of the Java VM, the updated release is 23 percent faster.

In an environment where the application server is running on two machines with a

single instance of the Java VM on each machine, the updated release is 91 percent

faster.

The benchmark testing illustrates that the update release is significantly faster —

from 23 to 91 percent faster than the 7.0 release.

���� ���

A three-tier EJB application was internally tested to run the latest business

benchmark, — the following configuration was used:

The application server tier was a Sun Fire™ V880 system configured with 6 x 750-

MHz UltraSPARC® III processors and 12-GB of memory for the single-machine test; a

second identical machine was added for the two-machine test. Tests were run with a

single Java VM per machine.

The database tier was a Sun Fire 4800 server with 8 x 750-MHz UltraSPARC III

processors and four GB of memory. A Sun StorEdge™ T3 disk array was used for

storage.

The client tier was represented by a Sun UltraSPARC 60 desktop.

Figure 5: Business Benchmark Test Bed

Client Tier

Application
Server Tier

Data Tier

UltraSPARC 60

Sun Fire V880
 - 6x750 MHz UltraSPARC III
 - 12 GB per machine

Sun Fire 4800
 - 8x750 MHz UltraSPARC III
 - 4 GB per machine
StorEdgeT3 Disk Array

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P11

��	 �
(������	��!����	�

In the April 3, 2003 edition of Network Computing Magazine, six application servers were

tested. According to the report, “The Sun ONE Application Server 7 (AS7) screamed its

way through our performance tests, offering the most scalable Web services environment

among the products we tested. Its ability to process requests as load increased made it

stand out from the pack.”

(www.nwc.com/shared/printArticle.jhtml?article=/1406/1406f2full.html&pub=nwc#4)

���� ���

The test platform was an eight-way, Xeon-based server, running Windows 2000

Advanced Server, with two GB of memory. Two Web services were created and

deployed. Using two different encoding models, DOC/Literal and RPC/Encoding, a Web

service was created that looked up a username and returned first and last names.

Performance was tested by sending 50,000 SOAP requests against each of these

services. Concurrency levels were varied from 10 to 30 under the same time- and

request-limit constraints.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P12

������
��
���������	��!
As part of a regular internal exercise, Sun executes a series of internal application

benchmarks to assist in determining the proper size and configuration for enterprise

applications. The testing cited here was performed on a reference architecture with the

following design goals:

� Stability — Highest priority

� Performance — Important, but secondary to stability

� Scalability — To very high levels

� High Availability — No single point of failure, with 24x7 availability

The internal benchmark exercises a mixture of Web server and EJB logic. To

produce sizing information, representative loads and applications that exercise popular

application server functionality are identified, and an infrastructure is created to test them,

including user load generation.

�������	�������%�)��
������

The first application function implemented operations that are typical of an online retail

site, such as catalog browsing, shopping cart, ordering, and so on. This used Java

servlets to implement the business logic, and employed common Web protocols to

communicate with the end user. The first type of user performs typical transactions to the

online Web portion of the application. The browser emulation software running on the

client’s server attempts to implement this user's load by performing a predefined mix of

transactions over a predetermined period of time. Appropriate delays, think times, and

random start times help distribute the load over the measurement period.

The second application function that was implemented employs different functionality

within the Sun ONE Application Server. This application functional block was

implemented with the J2EE platform and EJB components to implement an inventory

control system and support supplier interactions. A second type of user performs more

complicated transactions to the supplier and inventory portion of the application. This user

utilizes the functionality of the supplier and inventory part of the application, employing

EJB components to stimulate business logic that requires considerably more server

resources. It was determined that fewer users would need this application's more

advanced functionality. In addition, it was expected that a fixed number of users would

employ this functionality during the peak loading period. The latency of transactions for

the application was also monitored, to determine if it exceeded acceptable limits.

The two application functional blocks were stressed simultaneously, using the two

types of load generation clients. Both environments shared the same resources and

worked in the same instance (except where indicated) of the Sun ONE Application Server.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P13

��
��
�*���	������	�

Four types of software servers were used to support the application's functionality:

� Sun ONE Application Server 7.0. The study was focused on this server, which

implements the business logic of the application. It hosts the home Universal Resource

Locator (URL) where users make initial contact. No stateful information is kept on the

server, and it can be scaled horizontally with minimal effort. In addition to implementing

the business logic of the application, the server offers a full text search capability of the

product database, and maintains and displays a list of items purchased by the

customer.

� Database Server #1. Two database servers are used in this test bed. They supply all of

the persistent storage for the online Web portion of the application, including a

database of 100,000 products and 10,000 customers.

� Database Server #2. This server supplies all the persistent storage for the supplier and

inventory portion of the application. Note that it is separate from the database server

that supports the online Web portion of the application.

� Sun ONE Web Server 6 Image Servers. These systems support thousands of images.

With a typical online Web application, images and icons of various products, logos,

and the like are part of almost every page. In an ideal world, image servers would be

geographically dispersed throughout the network, so users could access them locally

through DNS techniques, avoiding the consumption of long distance network

bandwidth.

� Sun ONE Web Server 6 Secure Server. This offers a Secure Sockets Layer (SSL)

transaction for the checkout of the online Web application. It directly accesses the

database server to obtain the state of the user’s session based on a Web cookie. This

server also performs the final portion of the transaction through an SSL connection.

Figure 6 Server Architecture for Load and Performance Testing

It was determined that a mixture of loads in each portion of the application would be

utilized on the Sun ONE Application Server to simulate a real-world application

environment. This load mixture was determined by the type of users expected to exist at

peak periods.

Clients

Sun ONE
Application

Server

Data
DB Protocol

DB Protocol HTTP/S

HTTP HTTPHTTP

Database
Servers

Secure Server
Sun ONE

Web Server

Image Servers
Sun ONE

Web Server

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P14

To allow a study of both large and small-scale environments, the test bed employed

a 20-processor Sun Fire 6800 server. The CPUs are 1.05-gigahertz, UltraSPARC III

modules. By removing CPU cards — which consist of four CPUs and 32-GB of memory

from the hardware domain — one card at a time, a server with ever-decreasing capability

was produced. As CPUs were reduced, the memory associated with the cards was

removed as well.

&����	�

In the tests, the transaction load is applied from 100 to many thousands of users in order

to determine the sizing limitations of a particular server configuration. Multiple test runs of

this transaction load are placed against the server under test. For each test run, the

number of users increases. Eventually, the transaction latency exceeds acceptable limits,

determining the upper limit that can be supported by the server configuration.

Figure 7: Performance of the Sun ONE Application Server for 1, 4, 8, 12, 16,
and 20 CPUs Running the Sizing Load

In Figure 7, the knee of the performance curve for 1, 4, 8, 12, 16, and 20-processor

domains of a Sun Fire 6800 server are plotted on the same graph. As illustrated, the

performance of all of the configurations follows an almost linear slope of approximately

0.137 operations per second, per user. As soon as the CPUs on a Sun ONE Application

Server 7 instance approaches 100-percent utilization, the performance no longer

increases as additional user load is applied.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P15

Figure 8 demonstrates the maximum number of users generating the sizing load that

can be supported at any one moment in time with standard CPU-configuration servers.

Figure 8: Maximum Number of Users Supported by Number of Processors

Figure 9 shows how the number of operations per second scales with near linearity

as the number of processors increases.

Figure 9: Operations per Second by Number of Processors

Number of 1-GHz UltraSPARC III CPUs

Number of 1-GHz UltraSPARC III CPUs

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P16

$'���������	���
��
�����
'������
(
The University of Mining and Metallurgy conducted a benchmark against the Sun ONE

Application Server 7 and two of its competitors — Competitor 1 and JBOSS 3.02. The

goal of the study was to perform stress testing of a typical application in a J2EE

environment. In this case, a training activity manager application was employed, which

supports educational activities such as creating a new students’ laboratory, assigning

teachers to labs, creating new lessons and tests, adding students, and so on.

The test used two different approaches to manage data: CMP 2.0 entity beans, and

the Data Access Object (DAO) design pattern. The tests showed that the Sun ONE

Application Server 7 CMP 2.0 entity bean implementation outperformed those from

Competitor 1 and JBoss.

The tests also showed that the DAO design pattern offers much better performance

than CMP 2.0 containers. Testing DAO implementation as replacement for entity beans,

the Sun ONE Application Server outperformed Competitor 1 and JBoss DAO

implementations.

Figure 10: Create Use Case

0

50000

100000

150000

200000

250000

50 100 150 200 250 300 400 500 600 700 800 900 1000

Number of concurrent users

A
R

T[
m

s]

Comp. 1 - DAO

Comp. 1 - CMP2.0

JBOSS - DAO

JBOSS - CMP2.0

SunOne - DAO

SunOne - CMP2.0

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P17

Figure 11: Select Use Case

Figure 12: Delete Use Case

���	�'�%

Three use cases were employed for testing purposes:

� Create Data: New lessons for a given activity group is created.

� Select Data: Lessons information for a given activity group is fetched.

� Delete Data: Delete information about lessons and test for a given activity group.

� Because the stress tests were focused on database access performance study,

implementation of the data persistence mechanisms was the most important goal. Two

different approaches were studied:

� Session Facade with DAO: DAO is responsible for implementing appropriate factory

classes, which implement the JDBC API for database access. The DAO design pattern

0

50000

100000

150000

200000

250000

300000

100 200 300 400 500 600 700 800 900 1000

Number of concur r ent user s

A
R

T
[m

s]
Comp. 1 - DAO
Comp. 1 - CMP2.0
Comp. 1 - CMP2.0 (Read-Only)
Comp. 1 (Fetch Groups)
JBOSS - DAO
JBOSS - CMP2.0
JBOSS - CMP2.0 (Commit-A)
JBOSS - CMP2.0 (Read-ahead)
JBOSS - CMP2.0 (Read-Only)
SunOne - DAO
SunOne - CMP2.0
SunOne - CMP2.0 (Fetch Groups)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 400 500 600 700 800 900 1000

Number of concur r ent user s

A
R

T[
m

s]

Comp 1 - DAO

Comp 1 - CMP2.0

JBOSS- DAO

JBOSS - CMP2.0

SunOne - DAO

SunOne - CMP2.0

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P18

is used to abstract and encapsulate all access to the data source, as well as manage

all connections to store and retrieve information.

� Session Facade with entity beans based on CMP 2.0 specification: All business logic

responsible for persistence operations provided by the EJB container is implemented

using CMP 2.0 services. CMP 2.0 supports container-managed relationships both in

selecting and removing data.

Load was generated at the presentation layer using Grinder, a load generation client

application that was responsible for direct calls of session beans over RMI-IIOP,

measuring performance, and collecting all data. Grinder is a 100% Pure Java™ load-

testing framework that is freely available under a BSD-style, open source license. Both

the application server and database server were run on the machine, which was a Sun

Fire 6800 server with 20 CPUs, 20-GB of RAM, a 120-GB disk drive, a Sun Gigabit

Ethernet interface, and the Solaris 8 OS. Grinder was run on a separate machine: a Sun

Fire 3800 server with four CPUs, four GB of RAM, a Sun Gigabit Ethernet interface, and

the Solaris 8 OS.

Full details of this benchmark is available at

www.ics.agh.edu.pl/people/mj/papers/EjbPerf.doc

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P19

�����!��������%�������+���
To achieve optimal performance for any application deployment, the Sun ONE Application

Server requires tuning. Performance may be significantly enhanced by adjusting

deployment descriptor settings, modifying server configuration files and other settings, as

well as adjusting the underlying hardware and operating environment. Before tuning can

begin, it is important to understand the environment and performance goals. An optimal

configuration for a production environment may not be ideal for a development

environment. This section provides tips and techniques to help architects and

administrators understand the tuning and sizing options available, and help them optimize

performance from a Sun ONE Application Server 7 deployment.

Before tuning and deploying an application on the Sun ONE Application Server, it is

important to become familiar with the application architecture and underlying operational

environment. It is not uncommon to see moderately complex enterprise applications

developed entirely using servlets and JSP components. More complex business

applications are often implemented using EJB components. The Sun ONE Application

Server integrates the Web and EJB containers into a single process. Local access to EJB

components from servlets is very efficient. However, some application deployment may

require EJB components to execute in separate processes and remain accessible from

standalone client applications, as well as servlets. Based on the application architecture,

the server administrator can deploy the Sun ONE Application Server in multiple tiers, or

simply host the presentation and business logic on a single tier. The operating

environment — the hardware and operating system — should also be considered in any

performance-tuning efforts.

Additional information on tuning the Sun ONE Application Server 7 can be found at:

Sun ONE Application Server 7: docs.sun.com/db/doc/816-7159-10

Sun ONE Application Server PE Edition Update 1:

docs.sun.com/db/doc/817-2180-10

� Many parameters can be configured when tuning the Sun ONE Application Server for

peak performance. These fall into three major areas:

� Java VM tuning

� Web Container

� EJB Container and Resources

$���"�,-������!

The Java VM is the heart of the application server, so correct configuration can result in

significant performance gains. (Note: Using J2SE 1.4.1 or later is highly recommended for

best performance.) When tuning the Java VM, consider:

� Correctly sizing the heap: If the heap is sized too small, there will be more frequent

garbage collector (GC) activity, memory shortages, and overall reduction in

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P20

throughput. On the other hand, a heap that is sized too large will cause long pauses in

the GC, and is an unnecessary use of memory. The default heap configuration is

designed for a developer environment. Internal testing shows that proper heap sizing

can improve the transaction rate by 20 times.

� Choose the appropriate garbage collector: In addition to the existing GCs, two new

GCs are available in the Sun ONE Application Server 7.

� Throughput is parallel, young generation collection, which offers superior

scalability on multi-CPU systems. It should be employed when transaction rate

and time-to-completion are most important, and is most useful in high-throughput

server applications. Internal testing shows that utilizing the throughput GC can

improve the transaction rate by 18 percent, over and above a properly configured

heap.

� Short-Pause-Time Collector is a concurrent collection of the tenured generation

that dramatically reduces pause times on multi-CPU systems. It should be

employed when low pause times are important to focus system resources and

ensure consistent response times; for example, near-real-time

telecommunications applications. This GC provides the characteristics of an

incremental collector. In addition, it has an option enabling a parallel young

generation collector.

Note: The concurrent collector essentially takes a CPU away from the system, and

dedicates it to garbage collection. This can reduce potential throughput, since a system's

CPU is effectively removed from doing the application's work.

#������	����

For application environments that rely on JSP components and servlets, tuning the Web

container can provide dramatic improvements. System administrators should pay

particular attention to HTTP traffic, while optimizing output streams and caching common

queries:

� Optimizing connection handling: The HTTP subsystem is very scalable. The

application server defaults are not optimized for environments where there are many

HTTP 1.0 clients (clients sending HTTP/1.0 requests without a KeepAlive header),

single-request HTTP 1.1 clients, or HTTP 1.1 timeouts. The default tunings are also

not appropriate for a lightly loaded system that is primarily servicing KeepAlive

connections. Connection handling can be improved by:

� Increasing the number of acceptor threads if there are many short-lived

connections

� Decreasing the RqThrottle in systems with fewer CPUs

� Decreasing the KeepAliveTimout if clients typically disconnect

� Optimizing JSP components and servlet performance: There are many ways to

achieve this. For instance, in environments with HTTP 1.1 clients, sending large

amounts of data requires a change to use the OutputStreamSize parameter in the

obj.conf file. By default, this is set to eight KB; larger amounts will be sent in separate

chunks. If there are many large transfers, increase this number to lower the amount of

chunking the server must perform.

In addition, if a great deal of time is spent rerunning the same servlet or JSP

component, its results can be cached, then returned out of the cache the next time it is

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P21

run. The dynamic content caching of servlet responses is implemented using servlet

filters, and the JSP page caching is achieved using a custom tag library. The caching

can be configured and enabled using sun-web.xml. For exact configuration details

refer to: docs.sun.com/source/816-7150-10/dwservlt.html#27888.

This method is helpful for queries that are run by all visitors to a site. Note that the

results of the query should be dynamic, because it might change periodically — but the

logic need not be run for every user.

� Optimizing JDBC and SSL performance: JDBC Type 2 drivers and SSL libraries both

depend on native libraries. Using the multithreaded memory allocation library

libmtmalloc.so on a multiprocessor system provides significant scaling

improvements for these libraries. Based on internal testing of libmtmalloc.so

against libc’s standard malloc() on eight CPU systems, there is upwards of a 200

percent improvement in SSL performance and a 56 percent improvement in business

applications that use JDBC Type 2 drivers in Solaris 8 OS and Solaris 9 OS.

� HTTP server connection handling, worker threads, and queue parameters can be

tuned using the information obtained from the perfdump utility. This is a built-in

NSAPI utility that can collect performance data by employing various application server

internal statistics. For more details refer to:

docs.eng.sun.com/source/816-7159-10/pt_chap4.html#58338.

$'�&����
������%����	����

The Sun ONE Application Server 7 provides a highly configurable bean pooling

mechanism that allows the configuration of bean pools according to the needs of the

enterprise. In addition, the Sun ONE Application Server supports a number of tunable

parameters that can control the number of beans cached, as well as how long they are

cached. These Sun ONE Application Server parameters are easily tuned and configured.

�	�
���

For stateless session, message-driven, and entity beans, creating an EJB pool reduces

the overhead associated with creating and initializing bean instances. (Note: Instances in

the pool do not have an identity.) By monitoring the total beans created or destroyed and

excessive creation or deletion of instances, equilibrium can be maintained. Accumulated

unused instances should be avoided, as they will cause more frequent and longer full GC

cycles. A well-tuned cache will maintain an equilibrium of entity beans. Prepopulating the

pool with stateless session or MDBs is also recommended.

The pool and cache settings can be set both globally and on a per-bean basis. The

global settings are handled through the administrative console. On the page that

administers the EJB container, there are tabs for the default pool and default cache

settings. These settings apply to all beans that have not explicitly configured pool and

cache.

The pool and cache for specific beans are configured in the sun-ejb-jar.xml file

contained in the EJB component's Java™ Archive (JAR) file. A sample stanza looks like

this:

<bean-pool>

<steady-pool-size>32</steady-pool-size>

<resize-quantity>16</resize-quantity>

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P22

<max-pool-size>640</max-pool-size>

<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

<max-wait-time-in-millis>0</max-wait-time-in-millis>

</bean-pool>

<bean-cache>

<max-cache-size>512</max-cache-size>

<resize-quantity>16</resize-quantity>

<is-cache-overflow-allowed>true</is-cache-overflow-allowed>

<cache-idle-timeout-in-seconds>600</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>5400</removal-timeout-in-seconds>

<victim-selection-policy>nru</victim-selection-policy>

</bean-cache>

�	�
����

Stateful session and entity beans can be cached to reduce the cost of passivation and

activation of bean instances. (Note: Bean instances in the cache must have an identity.)

The cache can be tuned by monitoring cache hits and misses, the number of stateful

bean passivations, and the total number of beans in the cache. The goal is to minimize

the number of activations and passivations, while avoiding the accumulation of unused

instances, which results in frequent and longer full GC cycles. For entity beans, the cache

is tuned by increasing the cache size for beans with concurrent or iterative access

patterns. For stateful session beans, the maximum size of the cache should be set to the

expected number of concurrent clients. The removal-timeout-in-seconds parameter

should be used to prevent large numbers of session states on disk.

�	�
��������

Consistency levels are tunable in the EJB container, enabling a trade off between

performance and CMP consistency in transactions. There are two general approaches to

ensure consistency in database access layers. The first is locking, which is pessimistic

concurrency and may lead to decreased concurrency. The second approach is checking,

or optimistic concurrency, and may result in a larger number of database round trips.

The consistency level for a bean is set in the sun-cmp-mappings.xml file included in

the EJB component's JAR file. To decrease concurrency while increasing data

consistency, set the consistency level so that the bean is locked when it is first read, as

shown here:

 <consistency>

<lock-when-loaded/>

 </consistency>

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P23

.��
��	
��	�
�������!
The hardware and operating system are potential bottlenecks to application server

performance. For example:

� CPUs reach 100-percent utilization.

� The system runs out of physical memory.

� The performance of the disk subsystem is too low.

� The network connection between various servers and clients becomes the bottleneck.

��)�)	���/�	���

CPU saturation occurs when the usr and sys columns of a mpstat command add up to

a value close to 100. Vertical and horizontal scaling are the two best ways to solve this

type of bottleneck. Use either of the methods as follows:

� Vertical scaling can be accomplished by adding CPUs to the server. On Sun Fire

servers, hardware domains allow CPUs in one domain to be allocated to another

domain. In smaller systems, adding processors might be possible if the maximum for

that server type has not yet been reached. Always consider the systems availability

requirements when deciding whether to use a single server to support an application.

� Horizontal scaling is accomplished by designing an application to work on multiple

servers at one time, so the application's capacity can be increased by adding servers.

This also improves the application's availability if one of the servers fails.

-���
�

The Sun ONE Application Server can run out of memory in two ways. The first is related

to the physical memory required by the Solaris OS, and the second is specific to

requirements of the Java VM device running within the Sun ONE Application Server (as

previously noted).

Ensuring that there is enough free memory on the Solaris OS is critical to overall

server performance for several reasons. When the Solaris OS no longer has free memory

for the application to allocate, it uses the /swap partition on the disk. While the use of

/swap works for processes that do not run often, the performance of the server will suffer

dramatically if highly active processes cannot fit into memory.

For applications that access the disk often, having as much free memory as possible

allows the Solaris OS read cache to work efficiently, because the Solaris OS uses all

available free memory as read cache. For high-load environments, it is critical that

frequently used files are accessed only once, and from then on they are accessed

through the read cache.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P24

0��(�������	�����
��
�����

Many three-tier Sun ONE Application Server 7 deployments do not need high-

performance disk subsystems. This is because the server that executes the business

logic will likely depend on other servers (like database servers) to store the data it needs.

In general, redundancy and high availability are the highest concerns to be

addressed on any Sun ONE Application Server instance. Therefore, it is essential to

install the Solaris OS and the Sun ONE Application Server in a redundant environment

that can handle disk failures.

��	 �
(�������	��

A network bottleneck can frequently cause performance degradation that is perceived by

the end user. For many applications that produce Web page references external to the

Sun ONE Application Server, these bottlenecks occur on the ancillary servers delivering

the referenced content. Monitoring and sizing the network subsystem is necessary to

maintain high throughput and performance. For example, a single redundant gigabit

interface could be used by all clients and ancillary servers that access the Sun ONE

Application Server.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P25

0�������
�
���
�����
A number of significant improvements have been made to the Sun ONE Application

Server 7 developer environment, resulting in improved performance and efficiency in

application development and deployment. These improvements enhance the experience

in both tightly coupled and loosely coupled environments.

��!�	���������%�
���
�����	�

Plug-ins for leading integrated development environments (IDEs) enable close

cooperation between the developer environment and the application server development

and runtime environment. The Sun ONE Studio 5, Standard Edition is an IDE that

enables the creation, assembly, deployment, and debugging of code in the Sun ONE

Application Server from a single, easy-to-use interface. Sun ONE Studio 5 Standard

Edition is tightly integrated with Sun ONE Application Server PE Edition Update 1.

1�������������%�
���
�����	�

Many developers are more comfortable using both GUI and command-line tools to

develop and deploy applications. For example, an IDE may be used for debugging, while

command-line tools are used for deploying — often using Ant. (Ant is a Java technology-

based build tool that is extended with Java classes. Instead of using shell commands, the

configuration files are XML-based, calling out a target tree where tasks are executed.)

The Sun ONE Application Server 7 offers enhanced interaction with an Ant-based

development and deployment environment. Ant class-deployment APIs and scripts are

part of the application server environment. A comprehensive set of sample applications

and code packages leverage the Ant capabilities within the Sun ONE Application Server,

helping developers quickly understand how to iteratively assemble and deploy

applications.

�����������%�0��������	

The dynamic assembly and deployment of applications and components enhances

developer productivity because they can be deployed without restarting the Sun ONE

Application Server.

� Dynamic reloading: Enables reloading the classes that constitute an application when

they change on disk.

� Hot redeployment : Enables redeploying an existing application without restarting the

server. As well, applications and modules can be enabled or disabled without

undeploying it.

Dynamic redeployment is the ability to redeploy an existing application without a

server restart. This happens when an application's configuration (contents of its XML files)

and certain classes change. Dynamic redeployment results in behavior identical to that of

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P26

reloading the entire application's classes. In addition, dynamic redeployment involves

creating new application contexts (Web and EJB components) while removing the old

application contexts. Thus, dynamic redeployment produces a brand new instance of the

application (except for existing session data). This feature is supported in development

mode only, and can result in exceptions similar to those for dynamic reloading. Also,

configuration changes that require server restarts do not take effect until the restart is

completed. Dynamic reloading is activated only for applications and unshared standalone

modules with central configurations that specify it.

Hot deployment is the ability to deploy an application at server runtime, without

requiring a server restart. This feature uses the same infrastructure as dynamic

redeployment. However, since there is no state left over from a previous incarnation, this

feature is supported at production time.

The Sun ONE Application Server 7 Assembly Tool provides a complete solution for

packaging and configuring new and pre-existing J2EE applications. The J2EE Archives

created by this tool are deployable to Sun ONE Application Server 7. The tool can be

downloaded at: www.sun.com/software/download/products/3ec10b05.html

���������%�0�������
�
���
�����	

The developer environment is greatly streamlined in the latest Sun ONE Application

Server 7. The number of processes and application instances is significantly reduced —

other than ensuring that a suitable operating system is installed, no additional

technologies are required prior to installation. With a few mouse clicks, a full-featured

HTTP server, J2EE 1.3, J2SE 1.4, Java Transaction Service (JTS) compatible transaction

manager, and JMS messaging server are installed, preconfigured, and ready to use.

Optionally, a Sun ONE Studio IDE can also be installed as part of the Sun ONE

Application Server 7 installation. The administrative interface for both GUI and command-

line interfaces is capable of managing all configuration information and parameters.

Unlike previous versions, the server XML file can be modified directly.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P27

*�	�
��0�
��	����
Sun is committed to improving the performance of the Sun ONE Application Server, while

supporting and complying with existing and emerging Web standards. By optimizing the

interfaces and configuration of internal components, Sun expects to continue improving

overall scalability and performance.

These technologies include:

� Java Web Services Developer Pack (Java WSDP) 1.1: An integrated toolkit that

enables Java developers to build, test, and deploy XML applications, Web services,

and Web applications. It provides Java technology implementations of key Web

services standards including WSDL, SOAP, ebXML, and UDDI, as well as important

Java technology implementations for Web application development, such as JSP

components and the JSP Standard Tag Library. The Java WSDP includes:

� Java Architecture for XML Binding (JAXB) 1.0

� Java API for XML Messaging (JAXM) 1.1.1

� Java API for XML Processing (JAXP) 1.2.2

� Java API for XML Registries (JAXR) 1.0.3

� Java API for XML-based RPC (JAX-RPC) 1.0.3

� SOAP with Attachments API for Java (SAAJ) 1.1.1

� JavaServer Pages Standard Tag Library (JSTL) 1.0.3

� Java WSDP Registry Server 1.0_04

� Ant Build Tool 1.5.1

� Apache Tomcat 4.1.2 container

� Java VM technologies: J2SE and J2EE are the core of the Sun ONE Application

Server. Incorporating the latest improvements in these technologies will result in

improved application server performance.

� New smart tuning functionality enables the 1.5 VM to evaluate the machine it's

running on, and adapt itself for optimal performance.

� New floating-point instruction sets on x86 processors are expected to enable

developers and administrators to take full advantage of new hardware and

software platforms. J2SE 1.4.2 includes recognition of specialized hardware

characteristics, and exploits them for enhanced scalability and performance.

� Java VM runtime optimizations are expected to deliver substantial performance

improvements over previous versions.

� Lightweight performance monitoring tools are expected to overcome the intrusive

nature of existing tools. New tools will allow nonintrusive, real-time Java VM

performance monitoring in production environments. See

www.sun.com/developers/coolstuff/.

� Support for 64-bit platforms, in addition to the Solaris OS.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P28

� Solaris x86 improvements are expected to improve the performance of certain

applications by a factor of two in J2SE 1.4.2.

� Linux thread optimizations are expected to improve performance and scalability on

Linux platforms.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P29

��
��
����������
��	����2�
����*
�.�3���	 �
(
In Europe, family-run hotels are commonplace. Yet, finding these hidden travel gems has

not always been easy, because global, corporate tourism distributors tend not to service

smaller companies. For these small and medium-size businesses — the Federated

European Tourism Information Service Harmonization project (FETISH) — is offering a

compelling new advantage. Funded by the European Commission (EC), the FETISH

project has essentially developed a federated community of tourism enterprises and

services. This virtual community is brought together through Web services.

The Sun ONE Application Server is the information manager of the FETISH network.

It enables all small to medium-size, tourism-related European businesses to provide

value-add services by communicating and transacting peer-to-peer via Web services. The

FETISH network, with the Sun ONE Portal Server front end, is deployed at three regional

sites: Spain, Italy, and the U.S. It leverages the Sun ONE Proxy Server to direct requests

to one of three information managers, enabling a worldwide consumer base to make

reservations that span across countries via the federated tourism network.

According to the project coordinator, Andrea Nicolai, CEO of T6, “The Sun ONE

Application Server, with its support for industry standards such as Java technology and

Web services, was a perfect choice for us. It provides a robust, high-performance

business logic engine that will scale as we rapidly grow the FETISH Network. Our Java

Web services framework has made it easy to add or drop services from our network,” he

explained. “Services are interchangeable, so travelers might use a particular application

on the network to book a flight one week, and another to do the same thing a month later.

The functionality is all the same, and what happens beneath the surface is transparent to

end users.” To join the network, a vendor simply registers its service, data, or application

with FETISH. Then, the vendor receives access to any other service on the network —

potentially hundreds — through a thin-client browser. But this B2B aspect of the network

is only one example of what it can support.”

According to Nicolai, the architecture dramatically cuts down on administration load

by acting as a self-contained, decentralized network that continuously adapts to new

standards and services, as well as fluctuating network availability. It also employs self-

healing capabilities — if a software component failed, it would recover itself and continue

running.”

The project saw the following business benefits:

� Projected 100-percent reduction in TCO for members

� 500-percent reduction in development cycles

� 20 to 30-percent increase in revenue opportunity for small to medium businesses

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P30

The Sun ONE Application Server 7 played an instrumental role in meeting the

challenge of building an efficient, flexible global infrastructure that scales to support a

global variety of travel offerings

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P31

�����
����%�����������
Sun has the vision, architecture, products, and expertise to deliver Web services in a

performance-leading application server. This fifth-generation product is built with more

than eight years of expertise in delivering highly scalable, application server technology.

The Sun ONE Application Server 7 provides a solid platform for today's applications and

Web services.

The results highlighted in this paper show the significant performance capabilities of

the Sun ONE Application Server. Whether applications are more dependent on Web

server technologies or the business logic enabled in EJB components (and complex n-tier

architectures), the Sun ONE Application Server delivers. The tuning tips and techniques

discussed can assist developers and system administrators optimize their environments

for maximum performance and availability.

Built with Java technology, the Sun ONE Application Server 7 offers many features

and capabilities that appeal to developers. Compared to previous versions, it is easier to

install, easier to use, and more tightly integrated with developer IDEs and tools. As part of

an overall application and service deployment architecture, it can facilitate the integration

of backend application logic and data, user management services, and front end

presentation options. A reference implementation of the J2EE 1.3 specification, it is

distributed as part of the Solaris 9 OS. The Sun ONE Application Server 7 delivers a high-

performance, scalable, and reliable J2EE platform for developing, deploying, and

managing e-commerce applications and services.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P32

-�
��.���
��	���
What Influences the Performance of Application Servers?

developer.iplanet.com/docs/articles/appserver/influences.jsp

Sun ONE Application Server Tuning Guides

� S1AS7 Tuning Guide: docs.sun.com/db/doc/816-7159-10

� S1AS7 Update 1 Tuning Guide: docs.sun.com/db/doc/817-2180-10

Java 2 Platform, Standard Edition (J2SE) Performance and Scalability Guide

java.sun.com/j2se/1.4/performance.guide.html

Tuning Garbage Collection with the 1.4.2 Java Virtual Machine

java.sun.com/docs/hotspot/gc1.4.2/index.html

J2SE Performance Documentation

java.sun.com/docs/performance

Threading

java.sun.com/docs/hotspot/threads/threads.html

The Coolstuff Program

www.sun.com/developers/coolstuff/

Sun ONE Application Server Performance FAQ

java.sun.com/docs/performance/appserver/AppServerPerfFaq.html

Ask your Sun representative for copy of Sun ONE Application Server 7 Sizing Guide,

expected to be available in Fall 2003.

SPEC Benchmarks

SPEC® and the benchmark name SPECjbb®2000 are registered trademarks of the

Standard Performance Evaluation Corporation. For the latest SPECjbb2000 benchmark

results, visit www.spec.org/osg/jbb2000.

©2003 Sun Microsystems, Inc. Sun™ ONE Application Server 7 Performance P33

SUNTM Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California

95054 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its

use, copying, distribution, and decompilation. No part of this product or document may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University
of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed
through X/Open Company, Ltd. Sun, Sun Microsystems, Sun, the Sun logo, Solaris, Java, J2SE,
JVM, HotSpot, J2EE, EJB, JavaServer Pages, Enterprise JavaBeans, JDBC, JAR, Sun StorEdge,
100% Pure Java, and The Network Is The Computer are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems,
Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers
Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95)
and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

SUNTM Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie

95054 Etats-Unis. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en

restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou
document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu
par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par
l’Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et
licenciée exclusivement par X/Open Company, Ltd. Sun, Sun Microsystems, Sun, the Sun logo,
Solaris, Java, J2SE, JVM, HotSpot, J2EE, EJB, JavaServer Pages, Enterprise JavaBeans, JDBC,
JAR, Sun StorEdge, 100% Pure Java, et The Network Is The Computer sont des marques de
fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-
Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays.

Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc. L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par
Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de
Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur
l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui
mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU
IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE
TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT
TENU JURIDIQUEMENT NUL ET NON AVENU.

