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Abstract:

The Java 2 Platform, Enterprise Edition (J2EE) is established as the standard platform for
hosting enterprise applications written in the Java programming language. Similar to an oper-
ating system, a J2EE server can host multiple applications, but this is rarely seen in practice
due to limitations on scalability, weak inter-application isolation and inadequate resource man-
agement facilities in the underlying Java platform. This leads to a proliferation of server
instances, each typically hosting a single application, with a consequent dramatic increase in
the total memory footprint and more complex system administration. The Multi-tasking Virtual
Machine (MVM) solves this problem by providing an efficient and scalable implementation of
the isolate API for multiple, isolated tasks, enabling the co-location of multiple server instances
in a single MVM process. Isolates also enable the restructuring of a J2EE server implementa-
tion as a collection of isolated components, offering increased flexibility and reliability. The
resulting system is a step towards a complete and scalable operating environment for enter-
prise applications.
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1 INTRODUCTION

The Java™ 2 Platform, Enterprise Edition (J2EE)
[Sun03b] is the standard server-side environment
for developing enterprise applications in the Java
programming language.

J2EE applications are encapsulated in well-de-
fined enterprise archive files (ear files) and are
deployed and executed on J2EE servers in a simi-
lar manner to conventional applications on exist-
ing operating systems. Applications are typically
composed of several modules that handle specific
aspects, notably web modules for interaction and
presentation, Enterprise Java Beans™ (EJB)
modules for business logic, and resource adapter
modules for accessing legacy data systems. These
modules are hosted in containers that interpose
between the application modules and the avail-
able services. Containers are themselves instanti-
ated in servers, for example, a Web or EJB server.

The J2EE architecture is specified in such a way
that certain containers are defined to be logically
separate — for example, the Web container and
the EJB container — with communication through
well defined interfaces. A particular implementa-
tion of the architecture can choose whether to
support these containers in separate Java virtual
machines (JVMT™), possibly on different ma-
chines, or in a single JVM. In this way the archi-
tecture scales while providing a portable pro-
gramming model. Large scale systems typically
consist of a tier of web servers, a tier of EJB serv-
ers and a database tier. Each tier may also be
clustered to provide high availability and/or in-
creased throughput.

A single J2EE server supports the execution of
multiple concurrent applications using the class-
loader mechanism of the Java platform [LB98] as
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the means of separation, and the threading mecha-
nisms as the means of concurrency. The server
also manages the virtualization of global, shared
resources, such as database connections. A J2EE
server thus provides an operating environment for
J2EE applications in much the same way that an
operating system provides an operating environ-
ment for traditional applications.

However, limitations in facilities provided by the
underlying Java platform prevent the J2EE oper-
ating environment from providing the same qual-
ity of service as the process model of a traditional
operating system. For example, there is no robust
way to terminate a J2EE application as threads
cannot be stopped safely. Similarly, the degree of
isolation provided by the classloader model is
weak compared to that of an operating system
process. In addition, the Java platform provides
no way to control important resources, such as
CPU time, and therefore prevent denial of service
attacks. Finally, scalability issues in the JVM it-
self, for example, garbage collection algorithms
with long latencies, can be a limiting factor.
Much effort continues to be directed at improving
the scalability of a single JVM such that, in the
foreseeable future, this issue may disappear.
However, the platform limitations will remain un-
less the appropriate features are added.

The practical consequence of these limitations is
that typical J2EE servers host a single application,
even on large SMP machines, so that the process-
based mechanisms of the underlying operating
system can be used to satisfy the requirements of
isolation and resource management. Not only are
the multi-application facilities of the J2EE server
going largely unused, but the resulting increase in
the number of server instances is extremely
wasteful of memory, as the memory footprint of a



J2EE server is substantial. System administration
is also made more complex, as it is inherently
harder to manage a system comprising multiple
processes. The solution in many J2EE systems is
to include a special administrative server, which
adds additional footprint and complexity.

One can argue that if a particular J2EE applica-
tion must support so many clients that it requires
a multi-tiered and clustered J2EE installation,
then there is evidently no need to run multiple ap-
plications in a single server. However, not all ap-
plications have such requirements. Furthermore,
it is expensive and potentially wasteful to dedi-
cate a large hardware installation to a single ap-
plication. It would be more flexible and efficient
to deploy multiple applications across the cluster
on each server and be able to dynamically adjust
the resources that are assigned to each applica-
tion. Currently, this can only be achieved by pro-
viding a J2EE server instance for each application
on each machine in the cluster.

Our previous research led to the development of a
programming model, and an associated API ex-
tension to the Java platform, that supports fully
isolated computations. The API development,
carried out as a Java Specification Request under
the Java Community Process, is described by JSR
121 [JCPO1]. The isolation API is capable of be-
ing realized by a set of co-operating JVMs or by a
single, “multi-tasking” JVM. The API thereby
provides a portable programming model while en-
suring fault isolation between components. Two
implementations of this model have been built to
date. The first is the reference implementation of
JSR 121, that uses multiple operating system pro-
cesses to represent the isolated computations. The
second is the the Multi-tasking Virtual Machine
(or MVM) [CDO1]. Work is also underway to ex-
tend the model to clusters of separate machines.

MVM has demonstrated that co-locating compu-
tations in a multi-tasking virtual machine — com-
bined with aggressive, transparent, sharing of run-
time data structures — can significantly decrease
startup time and memory footprint [CDO1],
[CDNO2]. That work was carried out in the con-
text of the Java 2 Platform, Standard Edition
(J2SE™) platform, which targets desktop applica-
tions.

This paper addresses the applicability of the iso-
late programming model and the MVM to the
J2EE platform. It shows how the memory foot-
print of large multi-application systems can be
dramatically reduced and how sound inter-appli-
cation isolation can be achieved. In contrast to
previously reported measurements on MVM,
which used micro-benchmarks, we apply MVM
to the J2EE 1.3.1 Reference Implementation
(J2EERI) [SunO3c], reporting comparative per-
formance measurements against a standard JVM.
We also explore ways in which isolates could be
used to structure the internal implementation of a
J2EE server. We touch briefly on the issue of in-
ter-application resource management but a full
discussion of this topic is beyond the scope of this
paper.

The rest of the paper is structured as follows. Sec-
tion 2 provides an overview of the MVM archi-
tecture and the isolate programming model. Sec-
tion 3 contains an overview of the J2EE platform,
outlines the J2EERI architecture and discusses the
use of classloaders to achieve isolation. Section 4
describes the straightforward application of
MVM to support multiple J2EERI server in-
stances and provides comparative performance
measurements against a standard JVM. Section 5
discusses how isolates might be used explicitly in
the implementation of a J2EE server. Section 6
describes two particular experimental implemen-
tations and compares performance against the re-
sults of Section 4. Section 7 discusses related
work, Section 8 discusses ideas for future work
and we conclude in Section 9.

2 BACKGROUND ON MVM

MVM is a general-purpose virtual machine for
executing multiple applications that are written in
the Java programming language. It is based on the
Java HotSpot™ virtual machine (HSVM)
[Sun00a] and its client compiler, version 1.3.1 for
the Solaris™ Operating Environment [MMO1].

Applications executing in MVM are referred to as
isolates [JCPO1]. MVM-aware applications can
use the provided API to control the life-cycle
(e.g., creation and asynchronous termination) of
other isolates. The main (first) isolate does not
have to be an application manager — it can be any
application written in the Java programming lan-



guage. A simple example of the API is the crea-
tion of an isolate, which will execute MyClass
with a single argument “abc”:

new Isolate(“MyClass”, new String[] {“abc”}).start(...);

The key design principle of MVM was to exam-
ine each component of the JVM and determine
whether sharing it among isolates could lead to
any interference among them. Such components
are either replicated transparently on a per-isolate
basis or made isolate re-entrant, that is, usable by
many isolates without causing any inter-isolate
interference. They include static fields, class ini-
tialization state, and instances of class
java.lang.Class. Several components of HSVM
also needed modification to become isolate re-en-
trant.

An arbitrary number of isolates in MVM can
share the code (bytecode and compiled) and much
of the related metadata, of both core and applica-
tion classes. Runtime modifications make the rep-
lication of non-shareable components transparent.
In effect, each application “believes” it executes
in its own private JVM, as there is no interference
due to mutable runtime data structures visible di-
rectly or indirectly by the application code. Simi-
larly, certain runtime (JRE™) classes, such as
System and Runtime, had to be modified to make
operations such as System.exit() apply only to the
calling isolate.

The heaps of isolates are logically disjoint. The
separation of isolates’ data sets in MVM implies
that isolates cannot directly share objects, and the
only way for isolates to communicate is to use
copying communication mechanisms, either stan-
dard ones, such as sockets, or custom protocols
[PCD+02]. Another option is to use /inks, which
are a low-level isolate-to-isolate communication
mechanism introduced in the isolate API [JCPO1].

In MVM, most of the class representation and the
class loading, linking, and run-time compilation
effort is shared. In particular, only when a class is
loaded into MVM for the first time, are the actual
file fetching, parsing, verification, building of a
main-memory run-time representation of the
class, and several other steps performed. These do
not need to be repeated when another isolate uses
the same class. This provides a significant reduc-

tion in the startup time of programs, such as J2EE
servers, that comprise a large number of classes.

2.1 Multi-user Capabilities

MVM uses the process facilities of the underlying
operating system to encapsulate the ideas of pro-
tection and access control [CDTO03]. A single in-
stance of MVM exists as one process and con-
tains multiple isolates. Isolates may be started
within MVM by different users through a sepa-
rate login program called Jlogin, written in C.
Jlogin corresponds to a notion of a user session,
and is used to start a single isolate — the user sim-
ply types in the name of the main class and its ar-
guments, similarly to running the standard “java”
command.

After session initialization, Jlogin serves as a dae-
mon process that services all requests generated
by its associated isolate that require the user iden-
tity to be correctly set, e.g., accessing the file sys-
tem, environment information or spawning sub-
processes. The Jlogin process has the effective
user id and associated privileges of the actual
user, regardless of the process attributes of MVM
(Figure 1).

@ MVM

/ Jlogin \ [/ Jlogin \ [ Jlogin \

user id: usrl

user id: usr2

user id: usr3

Handling Handling Handling
native code native code native code
Mediating in Mediating in Mediating in
file access file access file access
Accessing OS Accessing OS Accessing OS
environment environment environment

Figure 1: Three users execute applications in MVM;

each of them has an instance of the Jlogin process.

The handling of the standard input/output/error
streams is similar to that found in the familiar op-




erating system process model. Each isolate has its
own instance' of a Jlogin process that, in addition
to encapsulating the user-id information, also
hosts user-supplied/untrusted native code librar-
ies, so that a failure of native code associated with
one isolate does not affect the others. This is es-
pecially important for the J2EE environment as
the J2EE Connector Architecture is frequently
used to access legacy code loaded as a native li-
brary.

The first isolate of MVM is a simple application
called Mserver that listens on a socket for connec-
tions from Jlogin processes. Each new Jlogin con-
nects to Mserver and the two exchange informa-
tion such as relevant environment variables and
user settings. Jlogin then sends a request to
Mserver to create an isolate to run the application
the user specified when starting that Jlogin in-
stance. The isolate connects to its Jlogin's stan-
dard input, output, and error streams. Multiple
Jlogin processes from different users can connect
to the Mserver to launch their applications within
the same instance of MVM.

Communication between isolates may take place
using any of the standard means provided by the
underlying operating system, for example, files or
sockets. To communicate via the link mechanism
of JSR121, a newly created isolate must be pro-
vided with at least one link in its start method. It
can then use one of these links to receive mes-
sages which may contain additional links on
which to communicate.

The default Mserver application starts isolates
with a null set of links, i.e., the expectation is that
each isolate started by Mserver is completely in-
dependent of the others. To provide flexibility in
the initial setup, it is possible to supply Mserver
with an alternate factory class that can customize
the initial environment in which the isolates oper-
ate. In Section 5 we describe how this capability
is exploited in the J2EERI environment to moni-
tor a collection of server components.

3 J2EE OVERVIEW

We first provide an overview of the architecture
defined by the J2EE specification and then out-

1 Lazily created for isolates created by program code.

line the
J2EERI.

implementation architecture of the

3.1 J2EE Specification
The J2EE 1.3.1 specification defines four manda-
tory application component types:

+ Application Clients

- Applets

+ Servlets, Java Server Pages
+ Enterprise Java Beans

These components have access to some or all of
the following required services:

« HTTP, HTTPS, RMI-IIOP communication
« JavaM Transaction APl (JTA)
- Java Database Connectivity (JDBG

- Java IDL(CORBA Interface Definition Lan-
guage)
« JavaM Message Service (JMS)

« Java Naming and Directory
(JNDI)

«  JavaMaifM,
work™ (JAF)

« Java API for XML Parsing (JAXP)
- J2EEM Connector Architecture

. JavdM Authentication and Authorization
Service (JAAS)

The J2EE platform also requires a database acces-
sible through JDBC.

The four application component types are re-
quired to be hosted in a container that interposes
between the application and the federation of
available services. The abstract relationships be-
tween the containers and services is shown in Fig-
ure 2. Note that while suggestive of physical
structuring, the architecture does not imply any
particular realization. In principle all elements
could be instantiated in a single JVM, although
they would typically span JVMs and machines in
a large installation. Although not shown in the
diagram, the containers themselves and some of
the services, e.g., JMS, are typically embedded in
servers— for example, a Web server, an EJB
server and a JMS server. We use the td@&E
serverto describe the aggregate of these logically

Interfade

JavaBeans Activation Frame-
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Figure 2: The J2EE Architecture.

embedded servers even if, in practice, there is noThe internal structure of the J2EERI is relatively
corresponding concrete entity. In the remainder of complex, in particular the Object request broker
the paper, an unadorned use of the term “server” (ORB) that underpins the Java IDL service, the
should be taken to mean J2EE server. We use theRMI-IIOP communication service, and the nam-
term “sub-server” to indicate a generic embedded ing service accessed through JNDI. However, the
server and the qualified form, e.g., Web server, Web, EJB and JMS sub-servers are relatively well

when appropriate. encapsulated. These sub-servers all make use of
the ORB for naming and inter-server communica-
3.2 J2EERI Architecture tion.

The J2EERI implementation is written entirely in

the Java programming language. It includes a ver-3.3  Classloaders and Isolation

sion of the Tomcat [ASFb] Web server. The IMS The J2EERI and most J2EE servers make exten-

service depends on the Cloudscape relational da-sive use of the classloader framework provided

tabase [IBMC], which is included with the by the Java platform [LB98]. Since classloaders

J2EERI, and is also written entirely in the Java and isolates share some of the same characteris-

programming language. At runtime, all servers tics, it is instructive to analyze their use in J2EE

execute in the same JVM, including the Cloud- servers.

scape instance that supports JMS. Typically an Classloaders provide several basic capabilities:

additional instance of Cloudscape, that executes . L

in its own JVM, provides the external database The c%pabmty_ to load multiple 'nStaTCGS Of the

component for JDBC access from deployed appli-  SaMe” class in the same JVM. By “same” we
mean ‘“has the same fully-qualified class

cations, although any database with a JDBC .,
driver can be used name,” regardless of whether the class content
' is identical or not.



The capability to alter the basic JVM search
mechanism for the classfile, for example, to

caused by a classloader mismatch can be very
challenging.

load classes from remote machines or Specific The classloader structure of a typical J2EE server

directories.

Runtime support for “isolating” objects by tag-
ging the effective type of an object by both its
class and its classloader.

The capability to interpose on the loading of
the class, for example to perform dynamic by-
tecode transformations.

J2EE servers, including the J2EERI, make exten-
sive use of the first three capabilities. More re-
cently, JBOSS [JBOSS] has exploited the trans-
formation capability to customize the server's ca-

pabilities at runtime.

Evidently the first three capabilities allow a J2EE
server to act more like a traditional operating sys-
tem in the sense that applications created after the
server was started may be loaded (deployed) and
executed. Further, applications may be unloaded,
a feature that is not available for classes loaded

by the standard JVM mechanism.> A modicum of

security is also achieved by the JVM preventing
the passing of otherwise equivalent objects be-
tween classloaders, by causing a class cast excep-
tion to be thrown.

Isolates provide similar capabilities to classload-
ers but the isolation and termination guarantees
are much stronger. Classloader “termination” is
essentially dependent on the garbage collector
finding the classloader to be unreachable. Further,
the isolation provided by classloaders is well
known to be incomplete and error-prone as ob-

jects can leak and be captured. Isolates, precisely

since they cannot share objects, deliberately or
accidentally, can be terminated and unloaded
cleanly. However, as discussed above, the impli-
cations of this strict isolation mean that the grain
cannot be as fine as that available with classload-
ers.

There is no doubt that the use of classloaders adds
complexity and opaqueness to a system. For ex-
ample, debugging a class cast exception that is

*The application is unloaded by the server discarding

its classloader. However, the associated classes are
only unloaded when the garbage collector determines
they are unreachable.

is surprisingly complex, much of it due to the
need to isolate some classes but share others. For
example, while servlet classes and EJB classes
can occupy separate classloaders, there is a prob-
lem with (non-system) utility classes used by
both. One potentially expensive solution would
be to load (replicate) the utility classes in each
classloader. Generalizing from the basic need for
a non-replicated solution to the core classes,
classloaders can, since JDK 1.2, be organized in a
hierarchy allowing shared classes to be loaded in
parent classloaders. It is this mechanism that
leads to the complex classloader structures in
J2EE servers. For example, to handle the utility
class problem, the J2EERI loads such classes into
the EJB server classloader and makes this the par-
ent classloader for the Web server components.

Note the very important distinction between the
use of a classloader hierarchy to share application
data (state) and the use to merely share code. In
the latter case, isolates arguably offer a funda-
mentally better solution by providing genuine en-
capsulation while retaining all the benefits of
code and meta-data sharing. In the data-sharing
case isolates cannot currently provide an equiva-
lent solution, as there is no notion of partial isola-
tion even between parent and child isolates. It is
an area for future work to determine whether it
would be possible to provide a transparent and
safe data-sharing capability’ in MVM that could
replace this use of classloaders.

MVM currently cannot share class meta-data and
compiled code for classes loaded in user-defined
classloaders. Therefore, the footprint of the
J2EERI server with deployed applications that
contain duplicated classes is larger than it should
be. However, we have recently developed a vari-
ant of HSVM that can share classes loaded by
user-defined class loaders when appropriate, and
it is expected that this will be integrated into a fu-
ture version of MVM.

3 Analogous to the copy-on-write facility of many
operating systems.



4 J2EERI on MVM

The most simplistic use of MVM is to run multi-
ple instances of an “isolate-unaware” application
in the same MVM instance. By “isolate-unaware”
we mean an application that does not make any
explicit use of the isolate API. In the J2EERI con-
text this amounts to running multiple J2EE server
instances using the Jlogin process described
above. In this case, we are effectively replacing
an entire JVM with an isolate, thereby providing
a direct way to compare memory footprint and
startup time.

Although the MVM system takes care of cor-
rectly managing the shared state at the Java plat-
form level, it is still necessary to examine any use
of state external to the Java platform for unin-
tended sharing. For example, the J2EERI stores a
great deal of state in the file system. Although
MVM takes care that each server instance has in-
dependently controlled access to these files, it is
the case that, by default, all instances would ac-
cess the same pathname, just as if multiple in-
stances of the server were run in individual
JVMs.

As delivered, the J2EERI supports only one
server instance per machine. It does, however,
support the sharing of a single file system tree be-
tween separate machine instances, by encoding
the machine name in all the pathnames to file sys-
tem state. In order to support multiple server in-
stances under MVM we augmented the pathname
with an additional discriminant. We chose a very
expedient solution to this problem that required
no changes to Java code, only to the startup
scripts for the server and related tools. At the root
of the pathname we introduce a “servers” direc-
tory and, below this, named subdirectories for
each server instance. This also has the virtue of
supporting server-instance-specific configuration
files, since, for example, each server instance
must listen on distinct sockets for its various com-
munication channels, e.g., HTTP, HTTPS, and
this information is read from files on server
startup.

In this arrangement, the server instances are logi-
cally distinct and are unaware of each other. In
principle, each server could be configured and run
with a different set of applications. However, to
allow accurate footprint comparisons between an

MVM-based system and an HSVM-based system,
we always configure the servers identically. Fig-
ure 3 shows the resulting isolate structure of the
multi-server (MS) setup. The arrows indicate the
isolate creation relationship. In this case all iso-
lates are created by the Mserver.

When comparing the MVM-based and HSVM-
based systems, there are three data values that are
of interest. The first is the total memory footprint
associated with the set of server instances. The
second is the startup time of the first and subse-
quent server instances, and the third is the per-
formance of an application deployed on the
server. While startup time may not seem espe-
cially important for a server application, it con-
tributes to the Mean Time To Repair (MTTR)
which is a key component in the calculation of to-
tal system availability.

Mserver

J2EE Server 1 Cloudscape Server 1

@&
’ ~

MVM\

J2EE Server 2 R Cloudscape Server)
s |
¥ Ry
J2EE Server 3 D Cloudscape Server 3
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A

Figure 3: Multi-server isolate structure.

All tests described in this paper were run on a
dedicated dual-processor, 1015Mhz, SPARC®
server with 4GB of main memory.

4.1 Memory Footprint Measurements

Memory footprint is calculated from data gener-
ated by the Solaris pmap utility and correlated
with JVM-specific data on the number and use of
various memory regions. We ignore those regions
that correspond to mapped jar files since, while
these are large for a J2EE server — as much as



50% of the reported footprint — they are also read-
once and potentially sharable. When calculating
the footprint of multiple HSVM processes we
only count the regions corresponding to shared li-
braries once. We show only the resident (physi-
cal) memory associated with the process, al-
though additional (virtual) memory may have
been reserved. Since the test machine is equipped
with 4GB of physical memory, we can be confi-
dent that the reported resident memory accurately
represents the maximum footprint.

A true apples-to-apples comparison of HSVM
and MVM memory is impossible, because
MVM's generational heap architecture has been
modified to support multiple isolates efficiently
by providing a new generation per isolate. In the
current MVM implementation, the maximum
number of isolates is fixed and certain data struc-
tures are sized accordingly on startup. In the tests
we ran HSVM with the standard heapsize defaults
(i.e., max 64MB) and MVM with a maximum of
eight isolates and a max heap size of 128MB.
However, it is important to stress that we only
count resident (i.e., allocated) heap memory in the
footprint.

4.1.1 Server Startup Footprint

We first measure the memory footprint for a set
of five server instances, with a default configura-
tion, and no deployed applications, as shown in
figure 4.

Evidently, MVM demonstrates substantially im-
proved scalability over HSVM. There is a very
slight (0.05%) increase in the MVM footprint
compared to HSVM for the initial server instance.
A 31% reduction in total footprint occurs for two
servers and a reduction of 43% reduction for
three. The trend continues for additional servers,
reaching a 55% reduction for five. The incre-
mental per-server overhead for HSVM is approxi-
mately 20MB, against SMB for MVM.

These numbers demonstrate the substantial over-
head from the duplication of class metadata that
occurs in multiple HSVM instances for large pro-
grams like J2EERI. Unlike micro-benchmarks,
which contain only a few classes, a J2EE server
contains several thousand loaded classes by the
time it is ready to accept requests. For J2EERI,
the meta-data overhead from this large set of

classes is 15MB per server instance, i.e., 75% of
the total overhead. This meta-data is much larger
than the code of the virtual machine itself, which
only contributes 30% of the total footprint.
MVM's mechanisms for sharing class metadata
are therefore proportionally more effective on
large systems like J2EERI and limit the footprint
increase to the actual amount of server-specific
data (as opposed to metadata). The following ta-
ble shows the percentage of the footprint attribut-
able to data, metadata and code for MVM as the
number of server instances increases.

Memory % S1 S2 S3 S4 S5

Data 20.06 29.62 37.13 41.41 4543
Metadata 57.38 51.1 46.1 43.58 40.84
VM code 2256 19.28 16.76 15.01 13.63

Data corresponds to objects allocated with the
new operator. Meta-data is all other memory allo-
cated by the virtual machine, including class
meta-data, constant pool, bytecodes, compiled by-
tecodes and other runtime data structures. Note
that the VM code, which is the only portion that
can be shared by the standard operating system
mechanisms, is a small and decreasing contribu-
tion to the footprint.
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Figure 4: Memory footprint comparison of multiple
J2EERI servers under HSVM and MVM.



4.1.2 Deployed Application Footprint

The server startup measurements provide a lower
bound on the memory consumption. To get more
realistic measurements. we deployed and ran an
application on each server. We chose the well-
known Petstore application [Sun03d], that was
written to showcase the J2EE platform. Petstore
requires an SQL database and we use a bundled
copy of Cloudscape. In this test, we provided a
separate Cloudscape database for each server in-
stance, so that the J2EE server instances are com-
pletely independent, end-to-end.

There are two ways to bring up the system. First,
start all Cloudscape instances, then all J2EERI in-
stances, then deploy Petstore on all servers, and
finally execute each instance of Petstore in turn.
In the second approach, each instance is started,
deployed and executed in turn. Both orderings
have the same memory behavior in the case of
multiple HSVM processes. For MVM, we meas-
ured both orderings and observed only small dif-
ferences due to the interaction of the different or-
derings and the shared garbage collector. We
show the results for the first order because it
highlights the costs for each stage more clearly.
To limit the size of the graph, we only measured
three instances. In the HSVM case this corre-
sponds to six HSVM processes, three for the
Cloudscape servers and three for the J2EE serv-
ers. Note that the deployment tool requires an ad-
ditional process, although the majority of the
work actually takes place in the J2EE server. In
the MVM case, we could have executed the de-
ployment tool as an isolate but chose not to as it
contributes little to the footprint.

Figure 5 shows the cumulative memory footprint
for each stage of the system. The x-axis uses the
following key: Cn: Cloudscape server n started;
Sn: J2EE server n started; Dn: Petstore deployed
on server n; Rn: Petstore run on server n. The ap-
plication is accessed through a web browser and a
single item is purchased from the store.

In this test, MVM has a 22% increase in footprint
for the first Cloudscape server. This is due to
Cloudscape having a very small footprint on
startup (unlike the J2EE server in the previous
test), so the additional overheads of the MVM
dominate. However, by the third Cloudscape in-
stance MVM has a 20% smaller footprint. The

maximum footprint reduction of 46% occurs at
the startup of the third J2EE server instance. Dur-
ing the deployment phase the reduction drops
back to between 27-31% and the footprint growth
rate is similar for HSVM and MVM. This is due
to the fact that MVM is not able to share the
classes that are loaded in separate classloaders.
The rate of footprint increase for MVM during
the run phase is very slow, and the total reduction
reaches 41% after all three instances have exe-
cuted. The reason why the HSVM footprint
climbs so rapidly during the run phase is mostly
due to Cloudscape, which loads a large number of
additional classes during the execution phase as
the database is accessed. There are effectively six*
Cloudscape instances in the system, and MVM is
able to effectively amortize the class loading cost.
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Figure 5: Memory footprint comparison of deployed
Petstore application with Cloudscape database.

4.2 Startup Time Measurements

We hand-instrumented J2EERI to measure the
elapsed time for the startup of the server compo-
nents. This immediately showed a considerable
speedup for second and subsequent server runs,
due to two expensive one-time costs. These are
the creation of a secure random number seed,

4 Three for the database servers and three for the

internal JIMS implementation.



which is cached in a server instance-specific file,
and the initialization of the JMS database, which
initializes a large number of files. To focus on the
normal startup time of a server, all reported meas-
urements are for second server runs.
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Figure 6: Startup time comparison of J2EERI
server instances under HSVM and MVM

The first server instance that is run under MVM
shows a 5.8% decrease in startup time (figure 6).
This is actually atypical as there is normally a
slight increase caused by the small JVM over-
heads needed to support isolates. However, in this
case, the speedup is due to the fact that the
Mserver has already loaded the network classes to
support the Jlogin communication, so this cost is
not paid by the J2EERI server, which makes ex-
tensive use of the network classes. The second
and subsequent server instances show a marked
decrease in startup time, reaching 77.3% at the
fifth instance, that is due to the main body of the
server classes already being loaded. The small re-
duction between the second and fifth instance is
due to another virtue of MVM: the threshold
counter for compilation of methods is global to all
isolates and, therefore, the latter isolates do not
incur this compilation cost.
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4.3 Throughput Measurements

MVM introduces a small amount of additional
compiled code, for example, to support the virtu-
alization of class static variables. On micro-
benchmarks the performance impact of these
changes has been measured as a penalty of less
than 2% [CDO1]. To determine the impact on a
J2EE server, we ran a simple throughput test by
putting a simple application under constant load
for a long period.

The application is very simple. The persistent
data is a simple relation containing products iden-
tified by name and price. The data is modeled us-
ing an entity bean that is mapped to the database
schema using container managed persistence. The
throughput test consists of a servlet that creates a
number of products and then executes some que-
ries to locate specific subsets that are returned in
a web page.

The throughput test was run twenty times for five
minutes duration each, with the client repeatedly
invoking the servlet with no think time, recording
the number of successful transactions, which
were then averaged across the twenty runs.

With the Cloudscape server running in a separate
HSVM process, the J2EE server running on
MVM showed a 1% increase in throughput and
similar request response times. However, when
the Cloudscape server was co-located in the same
MVM, throughput was increased by 11% and the
request response time was reduced by 36%. We
attribute this improvement to the removal of the
process context switching in the co-located case.

5 USING ISOLATES IN J2EERI

In the simple use of MVM described in the pre-
ceding section, there is no explicit use of the Iso-
late API and correspondingly no control point for
managing the entire system. The virtue is that no
code changes are required. However, it has the
following limitations:

« Resources, such as heap size and CPU time,
are managed according to the default behavior
of MVM. Although MVM strives for fairness,
explicit control would be useful. While be-
yond the scope of this paper, this can be
achieved through isolate-specific resource
management facilities [CHS+03].



« The components’ of the individual server in-
stances are not isolated from each other. Fail-
ure of an individual component implies failure
of the entire server instance (but not failure of
the entire system of instances).

If control of the individual servers is the main
concern, we should note that it can be achieved in
part by exploiting the ability to install a custom
isolate factory class in the Mserver. Since this
class can interpose on isolate creation and startup,
it can exploit any of the features of the isolate
API to control its child isolates. We have devel-
oped such a class to monitor J2EE servers and op-
tionally notify registered listeners of the creation
and destruction of server instances. This could be
developed further to create a basic administration
agent for a family of servers, without changing
the main server codebase.

Going further and explicitly introducing isolates
into the J2EERI implementation, the limitations
can be addressed more completely. However, in a
system as complex as J2EERI, there are a variety
of ways in which isolates might be used, not all of
which are advantageous.

Recall, in particular, that there is no sharing of
data permitted between isolates. All communica-
tion must be performed by passing values through
existing mechanisms such as serialization over
sockets or RMI, or by the link facility of the iso-
late API. Therefore, without extensive reprogram-
ming, one can only place components in separate
isolates that are already architected to communi-
cate using these mechanisms. Fortunately, the
J2EE architecture was designed from the outset to
be capable of spanning multiple machine tiers,
and therefore key components were specified to
support (remote) communication, passing argu-
ments by value.

5.1 Large-grain Isolation
Key large-grain components of J2EE architected
to communicate remotely are:

+ Application and browser-based clients

+  Web server

*We use the term component to indicate any set of
objects (and associated classes) that provide a well-
defined function — as large as an entire sub-server or
as small as a servlet.
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« EJB server
« JMS server
« Database server

In a conventional large-scale J2EE deployment,
each of these servers would be located in a sepa-
rate JVM or process. Further, there would likely
be multiple instances of some sub-servers, for ex-
ample Web servers, possibly hosted on a separate
tier of machines. Even in environments that do
not have a separate Web server tier, it is still com-
mon to run the Web server and the EJB server in
separate JVMs, although the resulting communi-
cation overhead is causing a trend towards co-lo-
cation in the same JVM.® Separation is only
strictly necessary when the Web server is not Java
technology based, e.g., Apache [ASFb].

While beyond the scope of this paper, we should
note that the isolate programming model is appli-
cable to multi-tier environments, and that work is
underway to extend the implementation to sup-
port machine clusters. In this paper we concen-
trate on the existing MVM implementation and
single machine scenarios. In either case it is im-
portant to understand the costs and benefits asso-
ciated with a particular component architecture.

5.2 Small-grain Isolation

Evidently the components architected for distri-
bution in J2EE are large-grain and at the level of
sub-servers. This is based on the well-known
guidelines for distributed computing: if a compo-
nent has a low-bandwidth communication inter-
face, makes few references to data objects in
other components, and performs significant com-
putation, then distribution will be beneficial.

However, it may be possible to find smaller sub-
components within the sub-servers that might
benefit from isolation. For example, one might
place an individual servlet in its own isolate (sec-
tion 6.1). Another example would be the use of an
embedded compiler to compile generated code for
EJBs. Whether such isolation will perform ade-
quately depends largely on the data access pat-
terns of the component. Potential benefits include
the additional control and modularity that results

6 Essentially, modern J2EE servers are becoming
multi-faceted systems that can act as web servers, EIB
servers, or both as the situation demands.



from the isolation, but these must be balanced
against potential loss of performance resulting
from inter-isolate communication.

It is possible that the additional control opportuni-
ties that arise from isolation may be significant
enough to outweigh the performance concerns.
For example, compilers, which might be dynami-
cally invoked to compile Java Server Pages, can
be prolific consumers of heap space. In a mono-
lithic server design, this data is mixed in with that
from other components and may have a negative
impact on overall garbage collection perform-
ance. If the component is isolated, it is very much
easier to both control the heap space allocated to
the compiler and also do expedient cleanup. Re-
call that MVM allocates each isolate its own new
generation in the heap. In a standard JVM, the
compiler's allocations in a shared new generation
might trigger a full garbage collection.

5.3 Sharing Considerations

Before considering how we might use isolates in
a small-grain approach, it is important to discuss
the impact of shared components in a J2EE sys-
tem.

While at one extreme, every component might be
replicated (shared-nothing), in practice, con-
straints, such as a shared database, may require
that certain components be shared. In this case,
one must be careful to avoid unintended replica-
tion of logically shared resources. Nevertheless,
considerable configuration flexibility is available
within the J2EE framework. For example, one
might choose to provide each application with a
separate HTTP server, and hence a separate port
number, or share a single (isolated) HTTP server,
with a port common to all applications.

Similar considerations apply to the database. For
example, while a single Cloudscape server in-
stance is capable of handling a number of differ-
ent databases, multiple servers are also an option
provided that we take care to avoid conflicts such
as port numbers and database file locations. The
multiple servers may realize an overall perform-
ance improvement because each database server
is focused on one database and one set of queries.
On the other hand, it may be the case that all the
applications running in the server logically share
the same database. In this case, Cloudscape re-
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quires that a single instance manage the database,
and it would be an error to replicate the Cloud-
scape server in each application isolate. Similar
considerations apply to the JMS server which, in-
ternally, also uses Cloudscape for persistent mes-
sage queues.

Therefore we can see that logically shared com-
ponents will typically impose some top-level
structuring into isolates. Beyond that there are
two basic approaches to further decompose a
server into isolates, architecture-based i1solation
and application-based isolation, that we discuss
below.

5.4 Architecture-based Isolation

The straightforward use of isolates follows the
logical architecture of J2EE and places each sub-
server in a separate isolate. The advantages of this
approach are:

+ Simple and minimal changes to J2EERI

- Extends easily to a multiple-machine environ-
ment

The disadvantages are:
«  Communication overhead is maximized

- Resource management must be implementa-
tion-component-based rather than application-
based

Evidently this approach is driven primarily by the
J2EE architecture and by the particulars of the
J2EERI implementation architecture. In essence
this approach uses an isolate in place of a separate
JVM process. This has the potential benefit of
faster communication between sub-servers if the
code is modified to use inter-isolate links instead
of sockets.

In this approach a complete J2EE application
would span multiple isolates (sub-servers), and
these sub-servers would also support multiple ap-
plications simultaneously. Since the architectural
decomposition is predominant, it is difficult to re-
construct an end-to-end application view and
therefore difficult to manage resources at the ap-
plication level. The resulting structure would be
similar to that found in many large legacy sys-
tems that use operating system processes as a de-
composition mechanism.



5.5 Application-based Isolation
This approach takes the position that the isolation
of whole applications from each other is the most
important goal. One or more complete applica-
tions are placed in an isolate that we refer to as an
application domain. The advantages are:

« Communication overheads are minimized. Lo-
cal, pass-by-reference interfaces may be used,
e.g., EJB local interfaces

 Interference between possibly conflicting ap-
plication demands is minimized

« Supports application-level resource manage-
ment

The disadvantages are:

« Each application domain has its own copy of a
sub-server. While the code of the sub-server
instances can be shared automatically by
MVM, the sub-server data cannot, which may
lead to a larger footprint

« There is no fault isolation of individual com-
ponents

In its purest form every sub-server is replicated in
this approach, including, for example, the data-
base.

Note also that, unless there are some global
(shared) sub-servers, this approach is equivalent
to the multiple-J2EE server instances discussed in
Section 5. The only difference is whether the
creation of the isolates is implicit through the
Jlogin process or explicit in the code of the J2EE
server startup class.

5.6 Combining Both Approaches

It is possible to combine the two approaches since
an isolate may create additional isolates.” For ex-
ample, within an application domain isolate, one
could create extra isolates that represent an archi-
tectural decomposition, e.g., a separate Web
server, EJB server, JMS server and database
server, provided this doesn't violate any sharing
constraints. The main advantage of this is in-
creased fault isolation. In principle a failed com-
ponent could be restarted without restarting the
entire domain.

"Any apparent hierarchical isolate structure is an
illusion. In particular, the API provides no way to
discover or exploit implied parent-child relationships.
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This order of decomposition is relatively easy to
achieve without major code changes. In contrast,
it is much harder to add application domains to an
architectural decomposition since, unlike multi-
tier capability, this requirement was not antici-
pated by the original designers and therefore in-
evitably requires significant changes to the source
code.

6 EXPERIMENTS

In this section we describe two experiments that
were carried out to evaluate the above ap-
proaches.

6.1 Servlet Isolation

In an earlier experiment with the Tomcat web
server, we evaluated the benefits of placing an in-
dividual servlet in an isolate.

In this experiment, the Tomcat servlet engine,
Catalina, runs in the base isolate of an MVM. The
modified engine can run servlets in the base iso-
late in the standard way, or iservlets in their own
isolate. An iservlet is indicated in the servlet code
by implementing a tagging interface Iservlet.® To
minimize changes to the Catalina code base, the
existence of servlet isolates is hidden from Cata-
lina and encapsulated in a ProxylServlet class. In
fact, all the major servlet classes have proxies that
simply forward requests to and from the iservlet
on links.

This is an example of the architectural approach.
Since, in this experiment, the only J2EE sub-
server was the Web server, the initial architectural
decomposition was trivial. Then, regardless of
how many iservlets are defined in the J2EE appli-
cation, each iservlet is placed in its own isolate,
essentially mimicing the architectural decomposi-
tion of the application into iservlets.

The experiment highlighted the issues that arise
due to the lack of object sharing between isolates.
There are a number of situations where the servlet
API allows direct communication between serv-
lets and also indirect communication through ob-
jects created by Catalina. For example, nothing
prevents a servlet passing a reference to itself to
another servlet, which can then invoke methods

5[t could also have been indicated in the deployment
descriptor.



on the first servlet. Session state is an example of
state that is shared between servlets and the base
engine. While all of these cases can be handled by
appropriate use of proxies and inter-isolate com-
munication, the richness of the sharing possibili-
ties makes the implementation relatively complex
and possibly subject to performance problems. It
is not clear from the servlet specification whether
all of these possible inter-servlet interactions are
considered good practice. However, it shows how
difficult it is to enforce boundaries in a system
initially developed in a single-address space envi-
ronment.

This experiment clearly demonstrated that it is
not trivial to take a system that was designed in
the context of a shared address space and restruc-
ture it into multiple address spaces. Approxi-
mately 7000 lines of code were required to imple-
ment iservlets without modifying the Catalina co-
debase. The experiment discouraged us from pur-
suing the use of small-grain isolates in other areas
of J2EE, such as individual EJBs.

In practice, it is likely that inter-servlet interaction
would be confined to the set of servlets associated
with a single J2EE application which, therefore,
would make a better unit of isolation. We have
not pursued this idea solely in the context of serv-
lets but it underpins the ideas in the following
section.

6.2 J2EE Application Domains

This experiment attempts to combine architec-
ture-based isolation and application-based isola-
tion in an optimal way. However, application-
based isolation is the principal focus and, there-
fore, the end result closely resembles the multiple
server instances of Section 4. The essential differ-
ence is that certain key services, for example
common aspects of deployment, are shared and
consolidated into an administration isolate. The
administration isolate is responsible for creating
additional isolates, called application domains,
each of which can host one or more applications.
The unit of management is therefore the domain
rather than an individual application, but the latter
can be achieved as a special case. This structure is
similar to that provided by many commercial ap-
plication servers that provide an administration
server instance to manage domains of other server
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instances [Sun03a]. However, in contrast, the ad-
ministration isolate is much simpler.

By default each application domain is a single
isolate and contains a Web server, a JMS server
and an EJB server. This configuration is referred
to as a combined domain and is shown in figure 7.
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Figure 7: Combined domain isolate structure

Each application domain optionally can be further
structured such that the Web server, JMS server
and and EJB server are instantiated in separate
isolates. This configuration is referred to as a
separated domain, shown in figure 8.

In both configurations, the communication be-
tween the administration isolate and the applica-
tion domain isolates is handled using links. Each
domain maintains a thread that listens for mes-
sages from the administration isolate. The major-
ity of messages concern the domain-specific as-
pects of deployment and requests to shut-down.
In the separated configuration, communication
between the individual isolates continues to use
the existing CORBA-based mechanisms, al-
though this could also be replaced with link-based
communication.
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Figure 8: Separated domain isolate structure.

6.2.1 Footprint and Startup Time Com-
parisons

In the MDS configuration the footprint is noticea-
bly increased due to the replication of the core
services, such as the ORB, in each sub-server.
The average per-domain overhead compared to
MDC is 7.4MB. Of this about SMB is actual
server data, and the remainder is additional meta-
data. The number of isolates also increases, at
three per domain, and this contributes a small part
of the meta-data increase. Note, however, that
the total MDS footprint is still about 20% below
that incurred by multiple servers each in their
own JVM (see figure 4).

Startup time in the MDC configuration is actually
slightly improved for the second and subsequent
domains over the MS configuration, as shown by
figure 10. In the MDC configuration the first do-
main value (D1) includes the time to start the ad-
ministration domain, that hosts the singleton web
server used for client stub downloading. The re-
duced startup time for subsequent domains is due
to not having to start this server in these domains.
As with memory footprint, the need to duplicate

The existence of the administration isolate in the ¢qre services in each domain, causes an increase

application domain system slightly increases the
memory footprint compared to the multiple server

case.

Figure 9 compares the memory footprint of five
server instances against five application domains,
in both combined and separated modes. The X-
axis label is nX, where X is M,C,S, for multi-
server (MS), multi-domain combined (MDC) and
multi-domain separated (MDS), respectively, and
n is the number of instances. We also show the
footprint for the administration domain in the
multi-domain configurations. To see the relative
growth in different contributions to the footprint,
it is broken down into VM code, meta-data and
data. The MS data is the same as that presented
earlier in figure 4. The overhead for MDC con-
figuration relative to the MS configuration is
2.76MB for one application domain, which is due
mainly to the existence of the administration do-
main, and the consequent duplication of several
core services. However, the average overhead for
domains two through five is only 0.97MB per do-
main. This is because the web server instance
used for client stub downloading only exists in
the administration isolate whereas it is replicated
in each instance in MS configuration.
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in startup time for the MDS configuration, al-
though it remains on par with the MS configura-
tion.
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Figure 10: Startup time comparison for multiple
server instances and multiple application domains.

We repeated the throughput test (section 4.3) in
MDC configuration with equivalent results to MS
configuration.

7 RELATED WORK

[BPW+01] describe a serially reusable JVM for
transaction processing environments that was
based on an earlier prototype JVM for the IBM
0S/390 [DBC+00]. Many of the goals are similar
to those of MVM but, as the title indicates, only
one transaction at a time can execute in the JVM,
which can be reset quickly to a clean state after
the transaction completes. The system makes ex-
plicit provision for trusted middleware code, such
as is found in a J2EE server. Middleware code is
loaded in a separate classloader and can retain
state across transactions provided that it maintains
the “clean” invariant of the JVM. Callbacks are
provided for middleware code to clean up after a
transaction completes. The heap is also structured
in a generational fashion to mimic the system
structure, allowing fast cleanup of transient ob-
jects allocated by the transaction. However, mid-
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dleware code must be careful not to retain refer-
ences to application objects for this to work cor-
rectly.

[KKL+02] outlines the SAP VM Container, an
application server framework that attempts to
achieve the isolation of operating system proc-
esses without the cost of a complete JVM process
per user transaction, through the use of a Process
Attachable Virtual Machine (PAVM). A PAVM
captures all the JVM computational state in an
isolated shared memory block, and can be at-
tached to one of a small pool of worker OS proc-
ess as needed.

The .NET platform [Micr02] defines application
domains, similar to the notion of isolates. In-
stances of System.AppDomain are virtual proc-
ess isolating applications from one another. Mul-
tiple application domains can exist in a single OS
process. However, there is no multi-user support
— all application domains in the same OS process
execute on behalf of the same user. Moreover, un-
like MVM's isolates, .NET's application domains
cannot safely use arbitrary native code. AppDo-
mains are being used in some .NET servers, e.g.,
ASP.NET.

The Merlin sub-project of the Apache Avalon
project [ASFc] provides a framework for con-
structing servers out of well-defined building
blocks. Merlin makes extensive use of hierarchi-
cal classloader structures to both share and isolate
components.

8 FUTURE WORK

Application domains provide the basis for future
work that will exploit the resource management
capabilities of MVM [CHS+03] to apportion re-
sources between J2EE applications according to
flexible policies.

Safe and transparent sharing of long-lived sub-
server data would further reduce the footprint of
J2EE servers and would remove the major re-
maining benefit of classloaders. We plan to ana-
lyze the characteristics of long-lived data in a
J2EE server and study ways to to extend the ex-
isting meta-data sharing capabilities of MVM to
such data. This would be particularly beneficial to
the separated domain configuration, as much of
the long-lived data of the replicated components



in the separated domains is believed to be identi-
cal and mostly immutable.

Further research is merited into the more wide-
spread use of fine-grain isolates for middleware
code, particularly in the context of clustered sys-
tems. Current server architectures tend to be
monolithic and/or result in large numbers of inter-
object references that limit the opportunity to re-
structure for isolation, security, resource manage-
ment or distribution. A more explicit, fine-
grained, architectural approach such as SEDA
[WCEO1], coupled with isolates, would be worthy
of investigation.

9 CONCLUSIONS

We have described how MVM, an efficient im-
plementation of isolates, can support multiple in-
stances of the J2EE 1.3.1 Reference Implementa-
tion, with a significant reduction of total memory
footprint and server startup time compared with a
standard HSVM. This was achieved with no
changes to the server code, and no loss in per-
formance, confirming that MVM can execute
multiple applications transparently and effi-
ciently. Throughput and response time improve-
ments were shown to result from the co-location
of the Cloudscape database server with the
J2EERI server in the same MVM, while retaining
isolation.

We discussed how a J2EE server might exploit
the isolate programming model internally and de-
scribed how we restructured the server to support
the concept of application domains, which allow
groups of J2EE applications to be fully isolated
from each other, while sharing the same server in-
frastructure. Memory footprint and startup times
were compared for two variants of application do-
mains, combined, in which the server components
occupied the same isolate and separated, where
they occupied different isolates. The combined
variant showed the best footprint and startup
times. However, both variants had smaller foot-
prints than the traditional approach of one JVM
per server.

Overall, MVM has been shown to provide an effi-
cient and scalable platform for hosting large,
complex, multi-server applications with sound
and flexible isolation. MVM is an important step
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towards a complete operating environment for en-
terprise servers based on the Java platform.
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