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Abstract. This paper presents the applicability of modern virtualization 
technology for policy-driven adaptive workload management. The workload 
consolidation problem and the resource management process are defined.  
Virtualization technologies used for workload consolidation haven been shortly 
overviewed and compared. Particular attention is devoted to lightweight 
virtualization using a container technology, applied in the Solaris 10 Operating 
System. Subsequently, software architectures for adaptive control of virtualized 
resources are described. Open-loop systems which exploit the model of 
controlled system behavior are compared to closed-loop systems exploiting 
feedback control. Practical aspects of the implementation of such systems for 
Solaris 10 containers have been elaborated.  Construction of a controller for 
work consolidation is elaborated. The JMX technology and the Solaris 10 
container technology are used for this purpose. Various principles of controller 
implementation have been proposed and practically verified. The conditions of 
their applicability have also been identified. As a conclusion, a hybrid 
controller has been constructed and successfully applied in an experimental 
system.  

Keywords: software engineering, virtualization, adaptive, workload 
management 

1   Introduction 

Efficient exploitation of complex computer systems under changing workload 
conditions requires greater IT infrastructure flexibility through intelligent matching of 
computing resources to application requirements, in order to meet Service Level 
Agreements (SLA). This may be achieved by equipping computer systems with 
mechanisms supporting self-management – a common trend observed recently in 
initiatives promoting the vision of Autonomic/Adaptive Computing [1].  They aim to 
build computing architectures that are capable of managing themselves, anticipate 
workloads, optimize performance and adapt to events occurring in the surrounding 
environment. In this way they contribute to QoS application requirements, which are 
of increasing importance in modern software engineering. 



Autonomic computing introduces the Autonomic Manager concept which performs 
the following activities: monitoring, analyzing, planning and execution. These 
processing steps require knowledge about managed resources built into the manager 
or collected during runtime. In the former case, such information can be represented 
as mathematical formulae, i.e. a managed resource model describing a relation 
between its state and control action that should be performed to achieve desired 
system behavior. The latter case corresponds to a situation where such a model is 
difficult to identify. The manager may search for suitable control parameters during 
an iteration process performed directly over managed resources. The managed 
resource has to be equipped with an interface providing sensors and effectors 
functionality to be managed.  

In order to achieve manageability, the computing resources are virtualized.  
Virtualization is a technology which combines or divides computing resources to 
create one or many operating environments, using such methodologies as hardware 
and software partitioning or aggregation, partial or complete machine simulation, 
emulation, timesharing, and many others.  As virtualization provides mechanisms for 
control of resources the complexity of the computer system remains very high and 
setting up a suitable control algorithm is challenging. The efficiency and correctness 
of the control strategy depends on many parameters, all of which must be very 
carefully identified. 

The research presented in this paper exploits lightweight containers as a 
virtualization technology used for load consolidation in modern operating systems.  
The aim of this study is to investigate the software architecture framework for 
consolidated workload management built with support of the JMX [7] technology and 
a preliminary study of different control strategies. Particular attention is devoted to 
identification of conditions under which classical control theory can be applied to 
control CPU-bound workload. Practical experiments have been performed for Solaris 
10 containers. 

The structure of this paper is as follows. In Section 2, workload consolidation 
mechanisms provided by modern virtualization and management technologies are 
discussed. The resource management problem is defined in this context. 
Subsequently, in Section 3, the concept of software architectures for adaptive control 
of virtualized resources are described. The problem of exposing virtualized operating 
system resources as managed resources, instrumented using sensors and effectors, is 
also discussed. Section 4 presents practical aspects of the implementation of such a 
workload management system. Open-loop systems which exploit the model of 
managed system behavior are compared to closed-loop systems exploiting feedback 
control. Construction of regulators for work consolidation management is elaborated. 
The JMX technology and Solaris Container technology are used for this purpose. In 
Section 5, different principles of controller implementation have been proposed and 
experimentally verified. The conditions of their applicability have been identified. 
The paper ends with conclusions. 



2   Virtualization technology for workload consolidation  

Modern enterprise data centers are shifting towards a utility computing model 
where many business-critical applications share a common pool of infrastructure 
resources that offer capacity on demand. Management of such a pool requires having 
a control system that can dynamically allocate resources to applications in real time. 
Each physical machine in the pool can consist of a number of virtual containers, each 
of which can host one or more applications.  

Enterprise applications typically have resource demands that vary over time due to 
changes in business conditions and user demands. This poses new challenges for 
system and application management which do not exist in dedicated environments. 
Because each of the hosted applications can express a resource demand that changes 
in short time scales (e.g. seconds or minutes), there has to be a control system that can 
dynamically allocate the server’s capacity to virtual containers in real time. The 
benefit of doing so is that it allows statistical multiplexing between resource demands 
from co-hosted applications, so that shared servers can reach higher resource 
utilization. At the same time, the control system should be responsive enough to 
ensure that application service level objectives (SLOs) can be met. 

The big challenge for consolidating multiple applications into a single physical 
server is to provide mechanisms of control over the resources (e.g. CPU, memory 
portions or network bandwidth) utilized by those applications. In the case where 
consolidated applications must be grouped (e.g. by business importance) into 
hierarchical sets, called workloads, simple tools are not sufficient.  

Modern, advanced operating system environments provide mechanisms to better 
satisfy performance requirements of workloads called lightweight virtualization. There 
are two primary approaches to this virtualization:  

• Container-based, which involves software that virtualizes an operating system 
environment. There is only one underlying operating system kernel, which the 
containers enhance by providing distinct borders offering increased isolation 
between groups of processes. Containers do not emulate any of the underlying 
hardware. Instead, the virtualized OS or application communicates with the 
host OS to share resource usage, which then makes the appropriate calls to 
real hardware. This technology is explored for instance by OpenVZ [9], and 
Solaris Containers [5, 6]. 

• Paravirtualization virtualizes parts of an operating system environment but 
also selectively emulates the hardware devices that a virtualized OS requires. 
Paravirtualization provides both a virtual machine and access to the native 
hardware, and thereby lets users run many instances of different OS’s. The 
best known examples of this concept are VMware [8] and Xen [10]. 

In the presented study the first kind of lightweight virtualization technology will 
be explored, as used in the Solaris 10 operating system. Solaris 10 supports even 
lighter virtualization mechanisms than Containers, offering resource control called 
Projects. A Project serves as an administrative tag used to group related work in a 
manner deemed useful by resource management without providing the isolation level 
supported by containers. Solaris Containers deliver predictable levels of quality of 
service. Some of these are achieved due to scheduling, which is a resource sharing 
mechanism that refers to making a sequence of resource allocation decisions at 



specific intervals. An application that does not need its current allocation leaves or is 
detached from the resource, which is then made available for another application’s 
use. 

When considering CPU resource consumption on a single machine by multiple 
workloads or isolated domains, e.g. Solaris Containers (which also contain several 
workloads), one must consider a situation where one workload or an entire domain 
monopolizes available processor cycles and impacts others workloads or domains. 
The default Solaris thread scheduler configuration is called Time Shared Scheduling 
(TSS). TSS adjusts the priority of each thread based on the time a given thread 
consumes or spends waiting for CPU resource and time quantum which is the limit of 
time for which a thread is assigned access to CPU, depending on priority. This might 
lead to a situation where important workloads suffer from insufficient CPU time to 
complete their work. It is desirable to have a scheduler which gives the ability to 
prioritize access to CPU resources based on the importance of the workload.  

The concept of a Fair Share Scheduler (FSS) [13] was introduced by J. Kay and P. 
Lauder [12]. This scheduler provides precise control of CPU use, allowing optimal 
system CPU resource usage. The system administrator expresses the importance of 
each workload by the number of shares, which are not the same as CPU percentages: 
shares define the relative importance of a given active workload to other active 
workloads. If (i) Sw – shares assigned to workload W, (ii) N – number of active 
workloads, (iii) Si – shares assigned to active workload i={1,..,N}, then the relative 
entitlement Ew of workload W can be expressed with the following equation: 

Ew = Sw/∑i
NSi (1) 

It is important to emphasize that FSS only limits the CPU usage if there is 
competition for CPU; otherwise CPU shares are never wasted and a given active 
workload can use 100% of CPU resources. A thread in the FSS class is assigned CPU 
access by the scheduler according to its share allocation, recent utilization and CPU 
usage by the other threads. When considering a workload with multiple threads, the 
processor cycles are assigned proportionally between these threads according to 
shares assigned to the workload. 

In Solaris 10, resource controls project.cpu-shares and zone.cpu-shares are used 
to specify CPU shares for Projects and Containers respectively. This feature is called 
Two-Level Fair Share Scheduling. Zone entitlement for CPU shares is also partitioned 
between projects in the zone. The values of these resource controls can be set 
statically or changed dynamically during runtime.  

3  Software architecture for adaptive workload management 

A very well known architecture for adaptive or autonomic computing has been 
proposed by IBM and distributed as the PMAC [2] (Policy Management Autonomic 
Computing) toolkit. PMAC uses the very general concept of AE (Autonomic 
Element) depicted in Fig.1. It consists of an AM (Autonomic Manager) and MR 
(Managed Resources). The control loop of AM consists of four basic steps:  



 

Figure 1.Autonomic Manager architecture proposed by IBM [1]. 

monitoring, analyzing, planning, and executing, which are typical for adaptive 
systems. These steps can exploit knowledge collected during system activity or 
supplied in the form of some kind of model. MR represents computer resources 
instrumented  with  sensors  and  effectors.  Usage of the PMAC AM model for 
adaptive workload management is quite natural. It requires exposition of virtualized 
OS components such as Solaris OS Containers as MR, and implementation of AM. 
The most convenient way is to implement sensors and effectors for Solaris Containers 
using JMX technology and present them to a decision subsystem as Java managed 
beans (MBeans). The solution is part of the JIMS [4] platform, developed by the 
authors, described in more detail in [3] and roughly illustrated in Fig. 2. It’s designed 
as a JIMS extension module implemented as a set of MBeans. Each container and 
project have separate instances of Effector and Sensor MBeans. The MBeans wrap the 
native OS mechanisms of project and container resource management and expose 
them as JMX connectors. Connectors make it possible to couple MBeans with the 
decision subsystem using any of the available RMI, HTTP or SNMP communication 
technologies. 

In Solaris 10 consumption of resources for workloads can be measured using the 
prstat command. This command reads data stored in /proc VFS (Virtual File System), 
where each process in the zone has its own subdirectory (in the global zone there are 
also entries for processes from local zones). The most important information is 
contained in psinfo, usage and status files. 
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              Figure 2. JIMS extension modules for Solaris 10 management. 



By summarizing information about resource usage of processes it becomes possible to 
calculate resource usage of projects and zones. The capability to review historical data 
is provided by the Extended Accounting facility which allows collection of statistics at 
the process level, task level or both. Referring to these OS mechanisms, MBeans are 
divided into three groups: monitoring, management and accounting. Inside each group 
there are MBeans for zones and projects. Resource monitoring MBeans contain read-
only attributes with basic information about zones or projects and their resource usage 
(CPU, memory, threads etc.) This information is periodically retrieved from /proc 
VFS with the help of a native library accessed through Java Native Interface (JNI). 
Management (Effector) MBeans use various methods to interact with the OS: in order 
to collect information about zones and projects, MBeans read configuration files or 
use JNI. Changes in configuration are applied by executing shell scripts and system 
commands (via invoking Java Runtime.exec()). MBeans are also able to emit 
JMX notifications to inform interested parties about changes in the system (i.e. 
concerning added projects or changed resource usage). 

Implementation of an Autonomic Manager (AM) with the PMAC toolkit is not 
straightforward due to some drawbacks. The current implementation, when used in a 
distributed environment, involves the Webshpere Application Server, while remote 
interfaces are only accessible via Enterprise Java Beans components. There is no 
support for JMX, which is a technology widely used for software system management 
[4]. Moreover, only Common Base Events can be consumed by PMAC, which calls 
for suitable adapter construction. 

4 Practical aspects of workload controller implementation 

Taking into account the drawbacks of the PMAC toolkit, a decision was made to 
implement AM using the JMX technology based on the JIMS framework. If a given 
event occurs (e.g. if there is a load change or a resource monitoring notification 
emerges) it’s possible to react more effectively when consumers are registered 
directly within the AM. Furthermore, even though having several control loops in 
system coordination seems desirable, the implementation of such behavior seems to 
be a non-trivial task with the PMAC. Thus, the customized AM is geared for 
workload management of Solaris Containers based on mechanisms specified by the 
Control Theory [11] and structured as: 

� Open-loop AM workload manager, exploiting the FSS model. The number 
of active Containers or Projects and their share (Si) assignment is 
monitored. Equation 1 from Section 2 is used for relative entitlement Ew of 
workload W calculation and suitable Si adjustment. 

� Closed-loop AM workload manager, which directly tunes Containers’ or 
Projects’ resource shares to achieve desired CPU allocation to the workload. 
In this case, the CPU consumption Uw

t at time t is measured and used by the 
controller to calculate desired shares. The key aspect of such an AM is the 
controller algorithm concept. 

The proposed AM types are depicted in Fig.3. Both managers use the same resource 
allocation control mechanisms, provided by FSS, but they differ in share calculation 



procedure. Examples of such procedures are considered below. 
 

 
 
 
 
 
 
 
 
 
 

4.1 Closed-loop control using Proportional or Proportional-Integral regulators 

The model is not used in this case; the whole system is treated as a black-box 
using the closed-loop controller depicted in Fig. 3. The controller uses current CPU 
usage values and adjusts them by changing shares (control signals) to maintain the 
requested CPU usage.  

A sample controller algorithm could use the Propotional (P) regulator expressed 
by equation (2) and Proportional-Integral (PI) where: (i) Uw – required usage of CPU 
by workload Ww, (ii) Uw

t – usage observed at time t by workload Ww, (iii) Sw
t – 

number of shares set at time t for workload Ww, (iiii) K p – proportional coefficient, Ki 
– integral coefficient. 
 

 

4.2 Open-loop regulator with the FSS model 

The open-loop regulator is based on the FSS model already described by equation 
(1). It must take into account the fact that the FSS considers only active workloads 
and if a given workload is not CPU-bound, then remaining CPU portions might be 
consumed by other workloads. 

Let’s assume that: (i) number Nw of workloads ≥ 2, (ii) number of active workload 
is changing at time t according to activity state vector At = [At

1, …, At
Nw]  where At

i = 
0 if Wi is not active and Ati = 1 if Wi is active, i = 1,...,Nw, (iii) each workload is CPU 
bound and has allocated shares Si. Following mathematical transformations of 
equation (1) we obtain equation (4) for shares Sw to be set for workload Ww: 

St
w = ( Uw ∑

Nw
i≠s Si* A

t
i)/ (1-Uw) (4) 

Where, ∑Nw
i≠s Si* A

t
i is the disturbance monitored by the manager and is equal to the 

sum of all active workload shares excluding workload Ww at time interval t. 

Sw
t+1 = Sw

t + Kp * e(t), where e(t) = Uw
t – Uw (2) 

Sw
t+1 = Sw

t + Kp * e(t) +  Ki ∑i
t
 e(t) (3) 
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    Figure 3. Open-loop and closed-loop AM concept. 



5. Solaris 10 case study 

This section presents a case study of controlling workloads within the Solaris 10 
environment. The implementation used the local control loop, running within a JIMS 
Management Agent on the machine on which the workload was running. The goal of 
this control loop was to adjust the project.cpu-shares resource control to a value 
which would assure that a given percentage of CPU time would always be available 
for a given workload.  

 
5.1. FSS control applicability rules 
 
When regulating CPU shares for the project we should check if the OS is fully 

utilized, because only then does FSS schedule the threads according to assigned CPU 
shares to specific projects; otherwise CPU resources which are not used are assigned 
to other workloads. This fact impacts the implementation of the controller. It would 
be very desirable to add a simple rule which checks if the whole OS is CPU-bound.      

Figure 4 depicts the case when a single CPU-bound process is started.  
Unfortunately, as can be noticed, output from prstat increases gradually over the 
period of more than one minute because prstat shows incremental CPU usage for the 
workload and moreover the measured value does not reach 100 %. This behavior 
impacts the controller interval. The value must be adequate with respect to the time 
required by FSS to adapt itself to specified shares and variable load. It is necessary to 
point out than prstat is the only utility which reports CPU utilization per project. It is, 
however, possible to check immediate, total CPU utilization using the vmstat Solaris 
utility, as shown in Fig 4. For that reason implementation of the rule which checks if 
the system is fully utilized uses the Solaris vmstat command, referring to the kernel 
statistics (KSTAT) interface. It may happen that under a fully utilized system some 
application threads are not properly preempted. Such a scenario occurred in the test 
depicted in Fig. 5. In this case, the JIMS monitoring thread responsible for acquiring 
monitoring data wasn’t scheduled properly by the OS and if the data are not 
effectively acquired, the closed-loop controller calculates the shares as 0. Such a 
situation might be observed when the OS is saturated i.e. the running queue length is 
greater than the number of CPUs. As a workaround, a simple rule is used, which 
checks if the size of the vector which stores data about CPU usage of controlled 
project is greater then zero. This rule is evaluated at each regulator interval and if the 
result is negative, that operation is cancelled but only for the current interval. 

 



When considering the case with a variable disturbance we should take into account 
a situation where there is only one CPU-bound workload and the whole CPU is 
assigned to that workload. In such a case it makes no sense to run the control loop. A 
rule might be implemented on the basis of the FSS model, which assigns CPU 
according to share value, considering other active workloads (Listing 1). This 
implementation returns a list of workloads and the controller may check whether the 
list contains a specific workload. 

  

List getCPUBoundWorkloads () { 
    List workloadsList = new ArrayList(); 
 
     /** Get active projects for which number of processes  
         and CPU usage is greater than zero */  
    List activeProjects = getActiveProjects(); 
 
     /** Calculate the sum of shares of these projects */ 
    int sumOfShares = 0; 
    foreach (projectId:activeProjects) { 
       sumOfShares += getProjectShares(projectId);   
    } 
 
    /** Project is to be considered CPU-bound if the current CPU usage is    
        greater or equal then its CPU  entitlement according to assigned  
        shares */ 
    float entitlement; float cpuUsage; 
    foreach (projectId:activeProjects) { 
      entitlement = getProjectShares(projectId)/  
                         sumOfShares; 
      cpuUsage = getCpuUsage(projected); 
      if ( entitlement <= cpuUsage ) { 
        workloadsList.add(projected); 
    } 
  } 
  return workloadList; 
} 

 
Another factor in the case with a variable disturbance is a situation when the CPU 

share for a controlled workload is not properly calculated. The explanation is very 
simple – namely when JIMS monitoring data are stored in a vector, some of them are 
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Instability of the Propotional controller
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Figure 4. Comparison of vmstat and prstat 
monitoring tools. 

Figure 5. Instability of the closed-loop 
Proportional (P) controller caused by irregular 
monitoring thread scheduling. 

Listing 1. Implementation of the rule which finds the list of the current CPU-bound workloads. 



acquired at a time when only controlled workload is active and is assigned nearly the 
entire CPU. Such data dilute the mean calculated value and if the value is bigger then 
the goal, shares are decreased instead of increased. The solution to the problem is to 
use a decaying average, similar to the Jacobson [14] algorithm used in the TCP/IP 
Protocol to smooth measured values. 

5.1 CPU control experiments 

This section reports a preliminary study of the closed-loop controller with rules 
proposed in the previous section. Experiments were performed under Solaris 10 
running on a Sun Blade B100 (1GB RAM, CPU SPARC 650 Mhz) board. The goal of 
control was to assure a constant allocation of the processor in conditions of variable 
load e.g. a given project is guaranteed to use 70% of CPU regardless of the number of 
other active projects workload and disturbances (also other workloads). The nspin 
application, provided by the Solaris Resource Manager tools, was used. There were 
two kinds of disturbances: variable and constant (Fig. 7). A variable disturbance was 
generated with a period of 90 seconds. A constant disturbance was activated after the 
controlled workload reached the steady state (considering the fact it was the only 
CPU-bound workload, it reached close to 100% CPU usage). CPU consumption due 
to monitoring and control activity performed by the JIMS Management Agent 
depicted in Fig. 6 shows that this overhead is not substantial.  

 
JIMS CPU consumption
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Figure 6. JIMS Management Agent CPU 
usage. 
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Figure 7. Disturbance generated during tests. 

 
Fig. 8 presents the case where only one CPU-bound workload is started in the 

selected project, at the beginning. After a few seconds, when CPU usage increases to 
95%, two other CPU-bound workloads are started in other projects, which results in a 
drop of CPU usage of the selected project. Then, after several more seconds, the P 
controller is turned on. It changed the share allocation to the controlled project, 
stabilizing CPU usage at 70%. The experiment was repeated for different values of 



the Kp coefficient. As shown in a Figure 9 the best results was achieved for Kp=7.  
 

Comparision of the coefficient values for the P  regulator
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Figure 8. Proportional regulator used for adjusting project.cpu-shares resource control for 
workload with target CPU usage of 70%. 

Quality of the P regulator according to the coeffic ient values 
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Figure 9. Quality of the Proportional regulator measured using integral of squared error 
method. 

An interesting observation is that despite the complexity of virtualization 
mechanisms and delay in CPU usage accounting performed by prstat, the system can 
be approximated to the first degree. These results justify the application of P and PI 
regulators for CPU usage control of the selected project, under variable disturbances 
shown in Fig. 7, as presented in Fig. 10. It is evident that the smoothing operation 
performed by Jacobson algorithms significantly improves control quality and 



stabilizes the system. P and PI regulators provide similar quality of control, as can be 
seen in Fig. 10. The integral of squared error is equal to 102271 and 100413 for P and 
PI regulators respectively. Coefficients for the PI regulator were calculated on the 
basis of the very well know method called step-response analysis [11]. 

 

Comparison of P and PI regulators with and without Jacobson
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    Figure 10. Proportional and Proportional-Integral regulators with the Jacobson algorithm. 

6. Conclusions  

This paper presents the framework for consolidated adaptive workload 
management. The primary contribution is organization of the control loop and its 
implementation with JMX technology, used for exposition mechanisms already 
supported by modern virtualization technologies. The proposed solution was 
successfully verified for a simple control policy. It opens a very wide area of research, 
focused on control strategy selection. The most promising course seems to be the use 
of a hybrid controller which combines elements of classical control theory with 
heuristic rules or fuzzy logic. These topics will be the subject of future studies. 
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