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Agenda

 Profile of JVM workload

 HotSpot™ VM internal architecture

 Garbage collection

 General HotSpot™ performance tuning

 Tuning HotSpot™ for application 
servers

 Further Information
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 Fast thread synchronization
 Adaptive compilation
 Generational garbage collector



Sun™
Tech
DaysMemory Model

 Handleless objects

 Two-word object headers

 Reflective data as objects

 Native thread support
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 Age old problems
 How to allocate space efficiently

 How to reclaim unused space (garbage) 
efficiently and reliably

 C (malloc and free)

 C++ (new and delete)

 Java™ (new and Garbage Collection)
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 Garbage detection
 Distinguish live objects from garbage

 Reference counting

 Cyclic reference problem

 Garbage reclamation
 Make space available to the running 

program again
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 Most objects are very short lived
 80-98% of all newly allocated objects 

die within a few million instructions

 80-98% of all newly allocated objects 
die before another megabyte has been 
allocated

 This impacts heavily on choices 
for GC algorithms
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 Copying

 Mark - Sweep

 Mark - Compact

 Incremental

 Generational

 Parallel Copy

 Concurrent

 Parallel Scavenge
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 Stop-the-world collector

 Very Efficient
 Traverses object list and copies objects in 

a single cycle

 Simultaneous detection and reclamation

 GC pause is directly proportional 
to total size of live objects
 Bigger semi-spaces improve efficiency

 Less frequent GC, more dead objects
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 Stop-the-world collector

 Distinguish live objects from garbage
 Traverse graph of pointer relationships

 Mark objects that can be reached

 Reclaim the space
 Heap space is “swept” for marked areas

 Free space is added to a free list, ready 
for use
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 Different-sized objects cause 
fragmentation
 Multiple free lists for different-sized blocks

 Cost of collection proportional to size 
of heap
 Not just live objects

 Locality of reference
 New objects get interleaved with old objects

 Bad for VM-based operating systems
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 Eliminates fragmentation issue of 
Mark-Sweep

 Allocation becomes stack-based

 Order of objects maintained
 Locality of reference

 Requires multiple passes to complete
 Mark live objects

 Compute new location

 Update pointers
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 Stop-the-world impacts performance
 Big heap, big pauses (00's – 000's ms)

 Interleave units of GC work with 
application work

 Problem is that references change 
while GC runs
 Get floating garbage
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 Old objects tend to live for a long time
 GC can spend lots of time analysing and 

copying the same objects

 Generational GC divides heap into 
multiple areas (generations)
 Objects segregated by age
 New objects die more quickly, GC more 

frequent
 Older generations collected less frequently
 Different generations use different algorithms
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Eden = NewSize – 

       ((NewSize / (SurvivorRatio + 2)) * 2)

From Space = (NewSize – Eden / 2)

To Space = (NewSize – Eden) / 2)

 -XX:NewSize

 -XX:MaxNewSize

 -XX:NewRatio

 -XX:SurvivorRatio
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 Tenured generation
 Objects with long lifetime

 -Xms

 -Xmx

 -XX:MinHeapFreeRatio

 -XX:MaxHeapFreeRatio
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 Used to hold class files

 Default size is 4Mb

 -XX:PermSize

 -XX:MaxPermSize

 -Xnoclassgc



Sun™
Tech
DaysParallel Copy GC

 Similar to copy-collector
 Still stop-the-world

 Allocates as many threads as CPUs
 Algorithm optimized to minimize contention

 Maximize work throughput
 Work stealing
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 -XX:+UseParNewGC
 Default copy collector will be used 

on single CPU machines

 -XX:ParallelGCThreads=<num>
 Default is number of CPUs

 Can be used to force the parallel copy collector 
to be used on single a CPU machine
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-XX:+UseConcMarkSweepGC
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 Stop-the-world

 Similar to parallel-copy collector

 Aimed at large young spaces (12-80Gb)

 Scales well with more CPUs

 Adaptive tuning policy
 Survivor ratio

 Promotion undo to prevent out 
of memory
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 -XX:+UseParallelGC

 -XX:ParallelGCThreads=<num>
 Control number of threads

 -XX:+UseAdaptiveSizePolicy
 Automatically sizes the young generation and 

selects optimum survivor ratio



Sun™
Tech
DaysFactors Affecting GC

 Rate of object creation

 Object life spans
 Temporary, intermediate, long

 Types of object
 Size, complexity

 Relationships between objects
 Difficulty of determining and tracking object 

references
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 Profile, profile, profile!

 Use profile data to determine 
factors affecting performance

 Modify parameters to optimize 
performance

 Repeat



Sun™
Tech
DaysProfiling GC

 Simplest approach

 -verbose:gc

 -Xrunhprof

 -XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps

 -XX:+PrintHeapAtGC
 Warning: very verbose
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 Always upgrade to the latest version 
of the JDK/JRE
 Sun is always working to improve 

performance

 Sun is always working to reduce the 
number of 'undocumented features'
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Changed implementation of AggressiveHeap option
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 Temporary
 Die before encountering a young GC

 Intermediate
 Die before being tenured to old space

 Long 
 Get promoted to old heap space

 Ratio of these has big impact 
on heap layout
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 Code inspection
 Remove references when not required

 Can do this explicitly with

  objectRef = null;

 Avoid creating objects
 Intermediate objects silently created when 

immutable object values change
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 Can be good for heavy weight objects
 Database connections/threads

 Reduce frequency of young GC

 Can also be bad
 Pooling can be more expensive than 

creation/collection

 Can violate good OO design principles
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 Promote all live objects
 No tenuring of objects in survivor spaces

 Good for apps with few intermediate objects

 -XX:MaxTenuringThreshold=0
 Number of times an object is copied in the 

survivor spaces

 -XX:SurvivorRatio=100
 Ensures all of young generation is allocated to 

the eden space
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 Reduce state
 Objects die before leaving eden

 Avoid references that span heaps
 More work required to trace links between 

young and old spaces

 Flatten objects
 Complex structures require additional work 

to determine live objects
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 Extremely important to GC performance

 Factors to consider
 Young GC frequency/collection time

 Ratio and number of short, intermediate 
and long life objects

 Promotion size

 Old GC frequency/collection times

 Old heap fragmentation/locality problems
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 Fragmentation is not an issue
 Locality of reference could be

 Maximize collection of temporary objects
 Reduces promotion & tenuring

 Minimize frequency of GC

 Rule of thumb: make it as large 
as possible
 Given acceptable collection times
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 Ensure heap fits in physical memory
 Paging and locality of reference issues

 larger young heap, smaller old heap

 Undersized heap can lead to 
fragmentation

 Oversized heap increases collection times
 Locality of reference problems

 Use ISM and Variable page sizes to alleviate
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 Designed for use on big memory Solaris machines
 Don't use if memory requirements will cause paging

 JDK1.3.1 introduced support for heaps > 2Gb

 ISM uses larger page sizes (4Mb rather than 8Kb)

 Locks pages into memory (no paging to disk)

 -XX:+UseISM (Solaris Only)

 -XX:+UsePermISM (Solaris Only)

 -XX:+UseMPSS (Solaris 9 Only)

 Need to change shm parameters in /etc/system
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 -XX:+UseAgressiveHeap
 Must have min of 256MB RAM

 Overall heap will be around 3850Mb

 Thread allocation area 256MB

 GC deferred as long as possible

 Do not use -Xms or -Xmx with this

 May cause stack space to run out
 Use -Xss to compensate

 Not suited to multi-app servers
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 -XboundThreads *

 -XX:+UseThreadPriorities

 -XX:+UseLWPSynchronisation **

 -XX:+AdjustConcurrency *

* Solaris Only

** SPARC Only
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 Allocate more memory to the JVM
 64Mb default is often too small

 Set -Xms and -Xmx to be the same
 Increases predictability, improves 

startup time

 Set Eden/Tenured space ratio
 Eden >50% is bad

 Eden = 33%, Tenured = 66% seems 
to be good
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 Understanding the virtual machine will 
help you tune performance

 Use profiling tools to find bottlenecks

 Adapt HotSpot™ parameters to your 
application

 Always use the latest JRE

 Sun is always improving Java™ 
performance
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 java.sun.com/blueprints/performance

 java.sun.com/products/hotspot

 research.sun.com/projects/jfluid

 developers.sun.com/dev/coolstuff/jvmstat

 Developer.java.sun.com/developer/
technicalArticles/Programming/GCPortal
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