
Sun™
Tech
DaysFaster Java™ Applications:

How To Tune The
HotSpot™ Virtual Machine
Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

Sun™
Tech
Days

Agenda

 Profile of JVM workload

 HotSpot™ VM internal architecture

 Garbage collection

 General HotSpot™ performance tuning

 Tuning HotSpot™ for application
servers

 Further Information

Sun™
Tech
DaysJVM Workload

Server-side applications Client-side applications

Thread
Synchronization

Waiting
for Native

Windowing
Code

Bytecode
Execution

Other

Memory
Mgmt.

Bytecode Execution

Memory
Mgmt.

Other

Sun™
Tech
DaysHotSpot™ Major Features

 Fast thread synchronization
 Adaptive compilation
 Generational garbage collector

Sun™
Tech
DaysMemory Model

 Handleless objects

 Two-word object headers

 Reflective data as objects

 Native thread support

Sun™
Tech
DaysAdaptive Compilation

Program
Source

JavaC Byte
codes

Dynamic
Compiler

Native
Machine

Code

Virtual
Machine

Profiler

Control

HotSpot™

Class File
Identical For All

VMs

Compiled Machine
Code Changes
During Lifetime
of Application

Aggressive Inlining
Loop unrolling

Sun™
Tech
DaysObjects Need Storage Space

 Age old problems
 How to allocate space efficiently

 How to reclaim unused space (garbage)
efficiently and reliably

 C (malloc and free)

 C++ (new and delete)

 Java™ (new and Garbage Collection)

Sun™
Tech
DaysGC Responsibilities

 Garbage detection
 Distinguish live objects from garbage

 Reference counting

 Cyclic reference problem

 Garbage reclamation
 Make space available to the running

program again

Sun™
Tech
DaysObject Lifetimes

 Most objects are very short lived
 80-98% of all newly allocated objects

die within a few million instructions

 80-98% of all newly allocated objects
die before another megabyte has been
allocated

 This impacts heavily on choices
for GC algorithms

Sun™
Tech
DaysCollector Algorithms

 Copying

 Mark - Sweep

 Mark - Compact

 Incremental

 Generational

 Parallel Copy

 Concurrent

 Parallel Scavenge

Sun™
Tech
DaysCopying GC

From space To space

Before

After

Root
Set

To spaceFrom space

Sun™
Tech
DaysCopying GC

 Stop-the-world collector

 Very Efficient
 Traverses object list and copies objects in

a single cycle

 Simultaneous detection and reclamation

 GC pause is directly proportional
to total size of live objects
 Bigger semi-spaces improve efficiency

 Less frequent GC, more dead objects

Sun™
Tech
DaysMark – Sweep GC

 Stop-the-world collector

 Distinguish live objects from garbage
 Traverse graph of pointer relationships

 Mark objects that can be reached

 Reclaim the space
 Heap space is “swept” for marked areas

 Free space is added to a free list, ready
for use

Sun™
Tech
DaysMark – Sweep Problems

 Different-sized objects cause
fragmentation
 Multiple free lists for different-sized blocks

 Cost of collection proportional to size
of heap
 Not just live objects

 Locality of reference
 New objects get interleaved with old objects

 Bad for VM-based operating systems

Sun™
Tech
DaysMark – Compact GC

Before

After

x

x
x

Sun™
Tech
DaysMark – Compact GC

 Eliminates fragmentation issue of
Mark-Sweep

 Allocation becomes stack-based

 Order of objects maintained
 Locality of reference

 Requires multiple passes to complete
 Mark live objects

 Compute new location

 Update pointers

Sun™
Tech
DaysIncremental GC

 Stop-the-world impacts performance
 Big heap, big pauses (00's – 000's ms)

 Interleave units of GC work with
application work

 Problem is that references change
while GC runs
 Get floating garbage

Sun™
Tech
DaysGenerational GC

 Old objects tend to live for a long time
 GC can spend lots of time analysing and

copying the same objects

 Generational GC divides heap into
multiple areas (generations)
 Objects segregated by age
 New objects die more quickly, GC more

frequent
 Older generations collected less frequently
 Different generations use different algorithms

Sun™
Tech
DaysHotSpot™ VM Heap Layout

Tenured Space

Permanent Space

Permanent Generation

Old Generation

Young Generation

Eden Space From
Space

To
Space

Survivor Ratio
(2Mb default) (64Kb default)

(5Mb min, 44Mb max default)

(4Mb default)

Sun™
Tech
DaysYoung Generation Heap Size

Eden = NewSize –

 ((NewSize / (SurvivorRatio + 2)) * 2)

From Space = (NewSize – Eden / 2)

To Space = (NewSize – Eden) / 2)

 -XX:NewSize

 -XX:MaxNewSize

 -XX:NewRatio

 -XX:SurvivorRatio

Sun™
Tech
DaysOld Generation Heap Size

 Tenured generation
 Objects with long lifetime

 -Xms

 -Xmx

 -XX:MinHeapFreeRatio

 -XX:MaxHeapFreeRatio

Sun™
Tech
DaysPermanent Heap Size

 Used to hold class files

 Default size is 4Mb

 -XX:PermSize

 -XX:MaxPermSize

 -Xnoclassgc

Sun™
Tech
DaysParallel Copy GC

 Similar to copy-collector
 Still stop-the-world

 Allocates as many threads as CPUs
 Algorithm optimized to minimize contention

 Maximize work throughput
 Work stealing

Sun™
Tech
DaysParallel Copy GC

Single Threaded
Stop-the-world

collector

Parallel, multi-threaded
Stop-the-world

young generation collector

Application
Threads

GC
Thread(s)

Sun™
Tech
DaysParallel Copy Collector

 -XX:+UseParNewGC
 Default copy collector will be used

on single CPU machines

 -XX:ParallelGCThreads=<num>
 Default is number of CPUs

 Can be used to force the parallel copy collector
to be used on single a CPU machine

Sun™
Tech
DaysConcurrent GC

ApplicationThreads

Stop-the-world initial mark phase

Concurrent mark phase

Stop-the-world re-mark phase

Concurrent sweep phase

-XX:+UseConcMarkSweepGC

Sun™
Tech
DaysParallel Scavenge GC

 Stop-the-world

 Similar to parallel-copy collector

 Aimed at large young spaces (12-80Gb)

 Scales well with more CPUs

 Adaptive tuning policy
 Survivor ratio

 Promotion undo to prevent out
of memory

Sun™
Tech
DaysParallel Scavenge Collector

 -XX:+UseParallelGC

 -XX:ParallelGCThreads=<num>
 Control number of threads

 -XX:+UseAdaptiveSizePolicy
 Automatically sizes the young generation and

selects optimum survivor ratio

Sun™
Tech
DaysFactors Affecting GC

 Rate of object creation

 Object life spans
 Temporary, intermediate, long

 Types of object
 Size, complexity

 Relationships between objects
 Difficulty of determining and tracking object

references

Sun™
Tech
DaysBasic Approach To Tuning

 Profile, profile, profile!

 Use profile data to determine
factors affecting performance

 Modify parameters to optimize
performance

 Repeat

Sun™
Tech
DaysProfiling GC

 Simplest approach

 -verbose:gc

 -Xrunhprof

 -XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps

 -XX:+PrintHeapAtGC
 Warning: very verbose

Sun™
Tech
DaysQuick Performance Fix

 Always upgrade to the latest version
of the JDK/JRE
 Sun is always working to improve

performance

 Sun is always working to reduce the
number of 'undocumented features'

Sun™
Tech
DaysPerformance Example

Changed implementation of AggressiveHeap option

Sun™
Tech
DaysObject Lifetimes

 Temporary
 Die before encountering a young GC

 Intermediate
 Die before being tenured to old space

 Long
 Get promoted to old heap space

 Ratio of these has big impact
on heap layout

Sun™
Tech
DaysReducing Object Lifetimes

 Code inspection
 Remove references when not required

 Can do this explicitly with

 objectRef = null;

 Avoid creating objects
 Intermediate objects silently created when

immutable object values change

Sun™
Tech
DaysObject Pooling

 Can be good for heavy weight objects
 Database connections/threads

 Reduce frequency of young GC

 Can also be bad
 Pooling can be more expensive than

creation/collection

 Can violate good OO design principles

Sun™
Tech
DaysDisabling Tenuring

 Promote all live objects
 No tenuring of objects in survivor spaces

 Good for apps with few intermediate objects

 -XX:MaxTenuringThreshold=0
 Number of times an object is copied in the

survivor spaces

 -XX:SurvivorRatio=100
 Ensures all of young generation is allocated to

the eden space

Sun™
Tech
DaysHelping The GC

 Reduce state
 Objects die before leaving eden

 Avoid references that span heaps
 More work required to trace links between

young and old spaces

 Flatten objects
 Complex structures require additional work

to determine live objects

Sun™
Tech
DaysHeap Sizing

 Extremely important to GC performance

 Factors to consider
 Young GC frequency/collection time

 Ratio and number of short, intermediate
and long life objects

 Promotion size

 Old GC frequency/collection times

 Old heap fragmentation/locality problems

Sun™
Tech
DaysSizing The Young Heap

 Fragmentation is not an issue
 Locality of reference could be

 Maximize collection of temporary objects
 Reduces promotion & tenuring

 Minimize frequency of GC

 Rule of thumb: make it as large
as possible
 Given acceptable collection times

Sun™
Tech
DaysSizing the Old Heap

 Ensure heap fits in physical memory
 Paging and locality of reference issues

 larger young heap, smaller old heap

 Undersized heap can lead to
fragmentation

 Oversized heap increases collection times
 Locality of reference problems

 Use ISM and Variable page sizes to alleviate

Sun™
Tech
DaysIntimate Shared Memory

 Designed for use on big memory Solaris machines
 Don't use if memory requirements will cause paging

 JDK1.3.1 introduced support for heaps > 2Gb

 ISM uses larger page sizes (4Mb rather than 8Kb)

 Locks pages into memory (no paging to disk)

 -XX:+UseISM (Solaris Only)

 -XX:+UsePermISM (Solaris Only)

 -XX:+UseMPSS (Solaris 9 Only)

 Need to change shm parameters in /etc/system

Sun™
Tech
DaysAggressive Heap

 -XX:+UseAgressiveHeap
 Must have min of 256MB RAM

 Overall heap will be around 3850Mb

 Thread allocation area 256MB

 GC deferred as long as possible

 Do not use -Xms or -Xmx with this

 May cause stack space to run out
 Use -Xss to compensate

 Not suited to multi-app servers

Sun™
Tech
DaysHotSpot™ Thread Options

 -XboundThreads *

 -XX:+UseThreadPriorities

 -XX:+UseLWPSynchronisation **

 -XX:+AdjustConcurrency *

* Solaris Only

** SPARC Only

Sun™
Tech
DaysGeneral Tuning Advice

 Allocate more memory to the JVM
 64Mb default is often too small

 Set -Xms and -Xmx to be the same
 Increases predictability, improves

startup time

 Set Eden/Tenured space ratio
 Eden >50% is bad

 Eden = 33%, Tenured = 66% seems
to be good

Sun™
Tech
DaysConclusions

 Understanding the virtual machine will
help you tune performance

 Use profiling tools to find bottlenecks

 Adapt HotSpot™ parameters to your
application

 Always use the latest JRE

 Sun is always improving Java™
performance

Sun™
Tech
DaysFurther Information

 java.sun.com/blueprints/performance

 java.sun.com/products/hotspot

 research.sun.com/projects/jfluid

 developers.sun.com/dev/coolstuff/jvmstat

 Developer.java.sun.com/developer/
technicalArticles/Programming/GCPortal

Sun™
Tech
Days

Q&A

Sun™
Tech
Days

Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

