Faster Java™ Applications:
How To Tune The
HotSpot™ Virtual Machine

Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

Agenda o | @Sun

Days

= Profile of JVM workload

= HotSpot™ VM internal architecture

m Garbage collection

m General HotSpot™ performance tuning

®m Tuning HotSpot™ for application
servers

m Further Information

JVM Workload

Server-side applications Client-side applications

Waiting

for Native

Windowing
Code

Thread
Synchronization Mgmt.

Sun™

HotSpot™ Major Features w | @Sun

m Fast thread synchronization
m Adaptive compilation
m Generational garbage collector

Memory Model ©Sun

= Handleless objects

= Two-word object headers
m Reflective data as objects
= Native thread support

Adaptive Compilation

Class File
Identical For All
HotSpot™
. . Dynamic
Compiled Machine Compiler
Code Changes |
During Lifetime .
of Application \ Virtual

l Machine

Profiler

Aggressive Inlining
Loop unrolling

Objects Need Storage Space

m Age old problems

= How to allocate space efficiently

= How to reclaim unused space (garbage)
efficiently and reliably

® C (malloc and free)

m C++ (new and delete)
m Java™ (new and Garbage Collection)

GC Responsibilities

m Garbage detection

= Distinguish live objects from garbage
m Reference counting
m Cyclic reference problem

= Garbage reclamation

= Make space available to the running
program again

Object Lifetimes

= Most objects are very short lived

m 80-98% of all new
die within a few mi

m 80-98% of all new

y allocated objects
lion Instructions

y allocated objects

die before another megabyte has been

allocated

= This impacts heavily on choices
for GC algorithms

Sun™

Collector Algorithms o | Sun

Vs

m Copying

= Mark - Sweep

= Mark - Compact

= Incremental

m Generational

m Parallel Copy

= Concurrent

m Parallel Scavenge

Copying GC

From space Root To space

J Set

) L |

L Before
¢
From space To space
After
A 4
—

Copying GC

m Stop-the-world collector
= Very Efficient

m Traverses object list and copies objects in
a single cycle

®m Simultaneous detection and reclamation

m GC pause is directly proportional
to total size of live objects

m Bigger semi-spaces improve efficiency
m Less frequent GC, more dead objects

Mark — Sweep GC

m Stop-the-world collector
m Distinguish live objects from garbage

= Traverse graph of pointer relationships
= Mark objects that can be reached

m Reclaim the space

= Heap space is “swept” for marked areas

m Free space is added to a free list, ready
for use

Mark — Sweep Problems

m Different-sized objects cause
fragmentation

= Multiple free lists for different-sized blocks

m Cost of collection proportional to size
of heap

= Not just live objects
m Locality of reference

= New objects get interleaved with old objects
= Bad for VM-based operating systems

Mark — Compact GC

— » Before
X

l After

Mark — Compact GC

= Eliminates fragmentation issue of
Mark-Sweep

m Allocation becomes stack-based
m Order of objects maintained

= Locality of reference
®m Requires multiple passes to complete

= Mark live objects
= Compute new location
= Update pointers

Incremental GC

m Stop-the-world impacts performance
= Big heap, big pauses (00's — 000's ms)

m |nterleave units of GC work with
application work

m Problem is that references change
while GC runs

= Get floating garbage

Generational GC

m Old objects tend to live for a long time

m GC can spend lots of time analysing and
copying the same objects

m Generational GC divides heap into
multiple areas (generations)

m Objects segregated by age

= New objects die more quickly, GC more
frequent

m Older generations collected less frequently
m Different generations use different algorithms

HotSpot™ VM Heap Layout feh

Survivor Ratio

(2Mb default) — | «— (64Kb default)
From To
Eden Space Space Space

Young Generation

Y

Tenured Space

Old Generation (5Mb min, 44Mb max default)

Permanent Space

Permanent Generation (4Mb default)

Young Generation Heap Size

Eden = NewSize —

((NewSize / (SurvivorRatio + 2)) * 2)
From Space = (NewSize — Eden / 2)
To Space = (NewSize — Eden) / 2)

m -XX:NewSize
m -XX:MaxNewsSize
= -XX:NewRatio
m -XX:SurvivorRatio

Old Generation Heap Size @Sun

m Tenured generation

m Objects with long lifetime

m -XMmS
m -Xmx
m -XX:MinHeapFreeRatio
m -XX:MaxHeapFreeRatio

Permanent Heap Size

m Used to hold class files
m Default size is 4Mb

m -XX:PermSize
m -XX:MaxPermSize
m -Xnoclassgc

Parallel Copy GC

= Similar to copy-collector
= Still stop-the-world

m Allocates as many threads as CPUs

= Algorithm optimized to minimize contention
= Maximize work throughput

= Work stealing

Parallel Copy GC

b
il

1 —

Single Threaded
Stop-the-world
collector

Mhreads —= ullﬂu

AAAAAAAS

GC
Thread(s)

Parallel, multi-threaded
Stop-the-world
young generation collector

Parallel Copy Collector

m -XX:+UseParNewGC

m Default copy collector will be used
on single CPU machines

m -XX:ParallelGCThreads=<num>

m Default is number of CPUs

= Can be used to force the parallel copy collector
to be used on single a CPU machine

Concurrent GC

-XX:+UseConcMarkSweepGC

Stop-the-world initial mark phase

T ————

Y Stop-the-world re-mark phase

T —

Parallel Scavenge GC ©Sun

m Stop-the-world

= Similar to parallel-copy collector

= Aimed at large young spaces (12-80GDb)
m Scales well with more CPUs

m Adaptive tuning policy

m Survivor ratio

= Promotion undo to prevent out
of memory

Parallel Scavenge Collector

m -XX:+UseParallelGC
m -XX:ParallelGCThreads=<num>

m Control number of threads
m -XX:+UseAdaptiveSizePolicy

= Automatically sizes the young generation and
selects optimum survivor ratio

Factors Affecting GC

= Rate of object creation
m Object life spans

= Temporary, intermediate, long
m Types of object
m Size, complexity
m Relationships between objects

= Difficulty of determining and tracking object
references

Basic Approach To Tuning wn | QSun

Days

= Profile, profile, profile!

m Use profile data to determine
factors affecting performance

= Modify parameters to optimize
performance

m Repeat

Profiling GC

m Simplest approach

-verbose:gc

-Xrun
-XX:+
-XX+
-XX+

= Wa

prof
PrintGCDetalls
PrintGCTimeStamps

PrintHeapAtGC

rning: very verbose

Quick Performance Fix

= Always upgrade to the latest version
of the JDK/JRE

= Sun is always working to improve
performance

= Sun is always working to reduce the
number of 'undocumented features'

Performance Example @Sun

SPEC|bb2000 Performance Improvement

200%:

)
=
= 1E0%:
E 1E0%:
£
&‘ 140%:
T 120%
T O-==E14.
o 100% B.esE142
4
s
o Ca R
M
= %
=
o 0%
=
20%:
D'::"::l |

Solans 9 xEh Redhat-Linus 7.3

Changed implementation of AggressiveHeap option

Object Lifetimes

= [emporary

= Die before encountering a young GC
® Intermediate

= Die before being tenured to old space
= Long

= Get promoted to old heap space

= Ratio of these has big impact
on heap layout

Reducing Object Lifetimes

m Code inspection

® Remove references when not required
= Can do this explicitly with
objectRef = null;

= Avoid creating objects

= Intermediate objects silently created when
Immutable object values change

Object Pooling

= Can be good for heavy weight objects
m Database connections/threads
= Reduce frequency of young GC

= Can also be bad

®= Pooling can be more expensive than
creation/collection

= Can violate good OO design principles

Disabling Tenuring

= Promote all live objects

= No tenuring of objects in survivor spaces
= Good for apps with few intermediate objects

m -XX:MaxTenuringThreshold=0

= Number of times an object is copied in the
SUrvivor spaces

m -XX:SurvivorRatio=100

= Ensures all of young generation is allocated to
the eden space

Helping The GC

® Reduce state

= Objects die before leaving eden
® Avoid references that span heaps

= More work required to trace links between
young and old spaces

= Flatten objects

= Complex structures require additional work
to determine live objects

Heap Sizing

m Extremely important to GC performance
m Factors to consider

= Young GC frequency/collection time

m Ratio and number of short, intermediate
and long life objects

= Promotion size
= Old GC frequency/collection times
= Old heap fragmentation/locality problems

Sizing The Young Heap

®= Fragmentation is not an Issue

= Locality of reference could be
= Maximize collection of temporary objects

= Reduces promotion & tenuring
= Minimize frequency of GC

= Rule of thumb: make it as large
as possible

= Given acceptable collection times

Sizing the Old Heap

m Ensure heap fits in physical memory
= Paging and locality of reference issues
m larger young heap, smaller old heap

m Undersized heap can lead to
fragmentation

m Oversized heap increases collection times

= Locality of reference problems
m Use ISM and Variable page sizes to alleviate

Intimate Shared Memory

m Designed for use on big memory Solaris machines

Don't use if memory requirements will cause paging
JDK1.3.1 introduced support for heaps > 2Gb

ISM uses larger page sizes (4Mb rather than 8Kb)
Locks pages into memory (no paging to disk)
-XX:+UselSM (Solaris Only)

-XX:+UsePermISM (Solaris Only)

-XX:+UseMPSS (Solaris 9 Only)

Need to change shm parameters in /etc/system

Aggressive Heap

m -XX:+UseAgressiveHeap

Must have min of 256MB RAM
Overall heap will be around 3850Mb
Thread allocation area 256MB

GC deferred as long as possible

Do not use -Xms or -Xmx with this
May cause stack space to run out

m Use -Xss to compensate
Not suited to multi-app servers

HotSpot™ Thread Options @Sun

m -XboundThreads *

m -XX:+UseThreadPriorities

m -XX:+UseLWPSynchronisation **
m -XX:+AdjustConcurrency *

* Solaris Only
** SPARC Only

General Tuning Advice

m Allocate more memory to the JVM
m 64Mb default is often too small
m Set -Xms and -Xmx to be the same

® Increases predictability, improves
startup time

m Set Eden/Tenured space ratio

m Eden >50% is bad

m Eden = 33%, Tenured = 66% seems
to be good

Sun™

Conclusions o | €@Sun

ys

= Understanding the virtual machine will
nelp you tune performance

m Use profiling tools to find bottlenecks

m Adapt HotSpot™ parameters to your
application

m Always use the latest JRE

m Sun Is always improving Java™
performance

Further Information

m java.sun.com/blueprints/performance

m java.sun.com/products/hotspot

m research.sun.com/projects/jfluid

m developers.sun.com/dev/coolstuff/ivmstat

m Developer.java.sun.com/developer/
technicalArticles/Programming/GCPortal

S Sun

microsystems

Push your
development
further

Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days
-

