
Push your development further
Sun™
Tech
Days

Wireless Game Development –
Now and Future
Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

Push your development further
Sun™
Tech
DaysSome Statistics

 Global video game market:

 $28 billion in 2001 (wireless games $.0007b)

 $30 billion in 2006 (wireless games $3.6b)
(Source: Informa: Global Videogame Market)

 7 million wireless gamers in 2002
71.2 million wireless gamers in 2007
(Source: IDC)

Push your development further
Sun™
Tech
DaysAgenda

 Challenges

 J2ME™ Platform for Game Development

 Summary and Resources

Push your development further
Sun™
Tech
DaysDevice Resource Challenges

 CPU Power

 Screen Size

 Memory

 Both static and dynamic

 Latency

 For networked games

Push your development further
Sun™
Tech
DaysUser Experience Challenges

 Rule #1: Games must be fun!

 Factors influencing ease of use

 Screen size
 Keypad size
 Sound capabilities
 Look and feel consistency
 Latency

 For network games

Push your development further
Sun™
Tech
DaysOn-device Debugging Challenges

 On-device debugging is usually
painful for small devices

 One can use emulators like
the J2ME Wireless Toolkit

 Tip: Override the toString() method to
print debugging information

Push your development further
Sun™
Tech
DaysMIDP 2.0 Game APIs

javax.microedition.lcdui.game

 This package provides a series of classes
for the development of rich gaming content

 APIs are optimized by device manufacturers
using native code, hardware acceleration,
etc.

 Game APIs consist of:
 Layer, Sprite, TiledLayer, LayerManager,

GameCanvas

Push your development further
Sun™
Tech
DaysStep 1: Set Up a Game Screen

Sprites

TiledLayer

Push your development further
Sun™
Tech
DaysStep 2: Define a View

1. Add game world screen
(TiledLayer) and sprites to
LayerManager

2. Define a view port into the
game world

Push your development further
Sun™
Tech
DaysStep 3: Render to the Screen

Push your development further
Sun™
Tech
DaysGame API Class Hierarchy

Push your development further
Sun™
Tech
DaysGame API Classes: Layer

 Abstract class that represents a visual
element of a game

 Layer subclasses must implement paint

 Layer methods:
int getHeight()
int getWidth()
int getX(), int getY()
boolean isVisible()
void move(int x, int y)
abstract void paint(Graphics g)
void setPosition(int x, int y)
void setVisible(boolean visible)

javax.microedition.lcdui.game.Layer

Push your development further
Sun™
Tech
DaysGame API Classes: Sprite

 Basic animated Layer that can display one
of several graphical frames

 The frames are all of equal size and are
provided by a single Image object

 In addition to animating the frames
sequentially, a custom sequence can also
be set in an arbitrary manner

 Also provides methods for transformation
and collision detection

javax.microedition.lcdui.game.Sprite

Push your development further
Sun™
Tech
DaysGame API Classes: TiledLayer

javax.microedition.lcdui.game.TiledLayer

 A Layer comprised of a grid of cells

 Each cell can display one of several tiles
that are provided by a single Image object

Cells can be filled with animated tiles,
whose pixel data can be changed very
rapidly

Very useful for animating large groups of cells
such as areas of water

Push your development further
Sun™
Tech
DaysGame API Classes: LayerManager

Manages a series of Layers
Automates rendering process for a game
that employs many Layers
Allows a developer to set a view window that
represents a user's view of the game
Provides APIs that control how the game's
Layers are rendered on the Screen

Javax.microedition.lcdui.game.LayerManager

Push your development further
Sun™
Tech
DaysGame API Classes: GameCanvas

 public class MyGameCanvas extends GameCanvas
 implements Runnable {
 public void run() {
 Graphics g = getGraphics();

 for (;;) {
 updateGameState(getKeyStates());
 redrawScreenContents(g);
 flushGraphics();
 try {Thread.sleep(50);}
 catch (InterruptedException e) {/*do nothing*/}
 }
 }
 }

 In MIDP 1.0, you needed three different thread
contexts (application, input events, repainting)

 In MIDP 2.0, GameCanvas handles game loop:

Push your development further
Sun™
Tech
DaysOther MIDP 2.0 Features Useful

for Game Development

 Painting polygons very quickly:
Graphics.fillTriangle()

 Arbitrary images galore:
Image.createRGBImage()

Push your development further
Sun™
Tech
DaysGraphics.fillTriangle() (1)

Public class Point {
 public int x, y, z, screen_x, screen_y;
 public void rotate(int yaw, int pitch, int roll) {/* ... */}
 public void translate(int xt, int yt, int zt) {/* ... */}
 public void scale(int n) {/* ... */}
}

public class Camera extends Point {
 public int yaw, pitch, roll;
}

public class Polygon {
 public Point[] plist;
 public int base_color, color, luminance;

 public Polygon(Point[] plist) {
 if (plist.length != 3 && plist.length != 4) {
 throw new IllegalArgumentException();
 }
 this.plist = plist;
 }

 public void shade(Point light) {/* ... */}
}

Push your development further
Sun™
Tech
DaysGraphics.fillTriangle() (2)

 public class ThreeDObject {
 public Polygon[] polygon_list;
 public Point origin;
 public int radius;

 public ThreeDObject(DataInputStream in) {/* ... */}

 public void rotate(int yaw, int pitch, int roll) {/* ... */}
 public void translate(int xt, int yt, int zt) {/* ... */}
 public void scale(int n) {/* ... */}
 public void transfromToScreenCoordinates(Camera camera)
 {/* ... */}
 }

Push your development further
Sun™
Tech
DaysGraphics.fillTriangle() (3)

 public void render(Graphics g) {
 for (int i=0; i<object_list.size(); i++) {
 ThreeDObject object = (ThreeDObject)object_list.elementAt(i);
 object.transfromToScreenCoordinates(camera);
 for (int j=0; j<object.polygon_list.length; j++) {
 Polygon poly = object.polygon_list[j];
 poly.shade(light);
 g.setColor(poly.color);
 g.fillTriangle(
 poly.plist[0].screen_x, poly.plist[0].screen_y,
 poly.plist[1].screen_x, poly.plist[1].screen_y,
 poly.plist[2].screen_x, poly.plist[2].screen_y
);

 if (poly.point_list.length == 4) {
 g.fillTriangle(
 poly.plist[2].screen_x, poly.plist[2].screen_y,
 poly.plist[3].screen_x, poly.plist[3].screen_y,
 poly.plist[0].screen_x, poly.plist[0].screen_y
);
 }
 }
 }
 }

Push your development further
Sun™
Tech
DaysImage.createRGBImage()

 Lets you do cool stuff:

 Texture Mapping
 Ray Tracing

 Watch out for garbage

Image.createRGBImage(int[] data,
 int width,
 int height,
 boolean alpha)

Push your development further
Sun™
Tech
DaysMobile Media APIs (JSR-135)

 Mobile Media APIs (MMA) specifies a
small footprint multimedia API for J2ME

 Allows for both audio and video
multimedia resources

 Addresses scalability and support
for more advanced features

 Can be used to enhance the game
experience with rich multimedia content

 Built-in support in the J2METM
Wireless Toolkit 2.0 (WTK)

Push your development further
Sun™
Tech
DaysMedia Types Supported in WTK

 WTK 2.0 supports the following media
formats for MMA development:

 Audio: PCM and WAV audio
 MIDI: MIDI (Type 0 and Type 1), SP-MIDI
 Video : MPEG-1
 Audio Capture: Typical audio capture from

Solaris, Windows, and Linux platforms

Push your development further
Sun™
Tech
DaysExample: MIME Types Supported

via MMA in Nokia 3650

 video/3gpp (3G video standard)
 video/vnd.nokia.interleaved-

multimedia (Nokia NIM video)
 audio/x-wav (WAV, various

encodings)
 audio/midi and audio/sp-midi
 audio/amr (speech encoding)
 audio/x-nokia-rng (Nokia ringing

tones)
 audio/x-tone-seq (Content type

returned by tone player)

Push your development further
Sun™
Tech
DaysSummary

 Wireless applications, games included, face
challenges beyond desktop and server apps
 Network latency, device power, form factor

 Think simple, user-friendly, and extensible

 Design for tomorrow, implement today

 Use proven technologies and design patterns

 Test, test, and test...

Push your development further
Sun™
Tech
DaysComing Soon to a Device Near You

 JCP developed specifications will continue
to expose additional capabilities in the near
future:

 Java APIs for Bluetooth (JSR 82)
 CLDC 1.1 (JSR 139)
 Location API for J2ME (JSR 179)
 Mobile 3D Graphics APIs for J2ME (JSR 184)
 J2EE Client Provisioning (JSR 124)

Push your development further
Sun™
Tech
DaysResources

 Download the Sun J2ME Wireless Toolkit:
java.sun.com/products/j2mewtoolkit

 Sun's wireless blueprints:
http://java.sun.com/blueprints/wireless/

 Wireless gaming blueprints:
http://java.sun.com/blueprints/code/index.html#games

 Kay Neunhofen's article discussing the details of
the wireless gaming blueprint applications:
http://wireless.java.sun.com/blueprints/articles/game/

 Java™ Games in the java.net community:
http://community.java.net/games

Push your development further
Sun™
Tech
DaysAdditional Resources

 kvm-interest mailing list archive:
archives.java.sun.com/kvm-interest.html

 J2ME Platform and Wireless Webcasts:
java.sun.com/jdc/onlineTraining/webcasts

 “The Nokia 3650 Mobile Media API” and
“Designing Single-Player Games” papers:
forum.nokia.com

Push your development further
Sun™
Tech
Days

Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

