2 Bartosz Ławniczek, Grzegorz Majka, Krzysztof Zieliński, Sławomir Zieliński
Jiro Based Grid Infrastructure Monitoring System
– State of Development Report 3

Jiro Based Grid Infrastructure Monitoring System
– State of Development Report

Bartosz Ławniczek, Grzegorz Majka, Krzysztof Zieliński, Sławomir Zieliński

Academic Computer Centre „Cyfronet”,

Department of Computer Science , AGH-UST

Kraków, Poland

bartek@spruce.jp, mikej@ds5.agh.edu.pl, kz@cs.agh.edu.pl, slawek@cs.agh.edu.pl
1. Introduction

The article presents the current state of grid infrastructure monitoring system and prospect of its further evolution. The system is developed as a part of ACK Cyfronet’s contribution to the Crossgrid project. The system’s first prototype functionality is mainly concerned with the instrumentation of resources and dynamic deployment issues, which are crucial for usability of the software. The functionality of the monitoring agents, the first prototype consists of, was provided by using Java Management Extension (JMX) and Jiro technologies. This functionality has been described in more detail in [1].

The process of deploying the monitoring software and collection and distribution of monitored information is very much dependent on the underlying software technology. The questions about the future of and maturity of Jiro technology induce consideration about alternatives. In that context, the mechanisms offered by the JMX framework should are discussed.

The structure of the paper is as follows. Section 2 presents the monitoring system deployment and configuration scenario. Next section contains analysis and comparison of Jiro and JMX based dynamic deployment mechanisms. The more detailed description of JMX services supporting dynamic configuration is presented in Section 4. The differences between freely available JMX reference implementation and a commercial product have been elaborated in Section 5. Jiro and JMX services supporting construction of events distribution layer has been described in Section 6. Interoperability aspects that are crucial for integration of the monitoring system with other components are covered by Section 7. The paper is ended with conclusions.

2. Monitoring system startup scenario

Detailed functional description of the Jiro and Java Management Extension based grid infrastructure monitoring system is described in [1]. This section will address only the system deployment and configuration process requirements.

The system is constructed according to a five layers architecture, that defines instrumentation, agent, management, database and user interface layers.

The tasks of the layers are as follows:

· instrumentation layer is expected to expose devices’ parameters’ values to the outside world,

· agent layer provides means for upper layers to communicate with the instrumentation layer,

· management logic layer is responsible for filtering notifications passed by the lower ones as well as performing pre-programmed administrative actions in cases of typical failures,

· database layer stores data about current state of the system as well as about its history,

· user interface layer is responsible for presenting the state of the system to the user.

Because grid systems are built of many computer nodes connected with each other via computer network, the remote instantiation of monitoring software seems to be a necessary functionality of grid management infrastructure. Saying more precisely, the components of instrumentation and agent layer should be launched on each monitored computational, storage or communication resource. An important aspect is that grid system’s configuration usually changes dynamically as new nodes are attached to the system or switched off. That means that the grid monitoring software should be able to adapt dynamically to the changing configurations.

The monitoring system first prototype setup procedure consists of the following basic steps:

1. installation of the core Jiro services on a selected node,

2. installation of Jiro Deployment Station service and necessary native libraries on the monitored nodes,

3. startup of the Jiro Lookup Service,

4. deployment of the monitoring agents on selected nodes,

5. startup of the monitoring agents.

Figure 1 depicts a sample installation of JIMS.

The installation procedure assumes that it is possible to use multicast communication between the host running the Jiro Lookup Service and the hosts running monitoring agents. The availability of multicast is needed for the monitoring agents to discover the lookup service with which they are to register. Although there is a possibility to pre‑configure the lookup service location, making the user do so would make the system practically unusable for two reasons:

· it would not be able to use replicas of the lookup service,

· it is not feasible to keep track of configuration of all monitoring agents in grid systems.

[image: image1.wmf]WN

WN

WN

WN

WN

WN

SE

CE

Domain Server

Therefore, automatic configuration seems to be the only option for such a system. Detailed installation procedure can be found in [2].

3. System startup

The requirement of system flexibility results in the need for implementing at least two features: dynamic deployment and discovery of running system entities. Dynamic deployment is a very important feature because it makes easier both version management and system configuration. Since the system entities are expected to run on many host machines, it is desirable for an administrator to reduce the number of software packages to be installed on each individual node prior to running services. Therefore, an ideal solution would be to make the administrators install only the core packages that are not expected to change for a relatively long period of time and leave installation of the other parts of a distributed system to its users. On the other hand, the services providing for dynamic deployment should not introduce significant overhead from the users’ point of view.

The deployment of a new service is typically composed of three stages: sending the code implementing the service, matching the code’s privileges against the security policy in place on the target machine and running the service (possibly in an environment with limited access to the hosting machine resources). There are a number of possible solutions for enabling dynamic deployment in distributed systems. In the technological context of JIMS, there are at least two worth consideration, i.e. Jiro Deployment Station and Java Management Extension’s M-let service.

Both the solutions do not require much programmer’s effort to implement an interface for running the deployed service. In Jiro’s case no additional coding is needed; the JMX based solution only requires providing a descriptor containing an URL for the Management Bean (MBean) implementing the service to be loaded. Since the MBean interface is basic for most of objects implemented in distributed systems based on the JMX environment, fulfilling such requirement is not an issue for the programmer.

The first prototype of JIMS uses the Jiro-based mechanism for deploying the host monitoring services. The monitoring code is organized in two parts: one to be installed on machines to be monitored prior to setting up the system and second – to be deployed, run and revoked at runtime. The pre‑installed part consists of an implementation of the deployment station service and a native monitoring library, which is loaded by the deployed service at launch time. The functionality of the deployment station with no deployed services is restricted to keeping its registration with the Jiro Lookup Service up to date, which results in sending a few packets to the network. From the hosting station’s point of view, that introduces practically no overhead.

JIMS provides a couple of tools to make the deployment easier: ExtFinder (which is an extended version of OKI Lab’s Jini Service Finder) and Installer. Both of them can be used to deploy monitoring agents to the target machines. However, since the ExtFinder is equipped only with a BeanShell-based command line tool, the drag-and-drop oriented Installer seems to be more convenient.

Since the low‑level system entities can be deployed and started any time, it is necessary to provide means of finding other system services for them. There are two commonly used approaches to this topic: registration and discovery. Jiro platform provides a replicable registry of system objects, called Lookup Service. Each system entity is required to register in it at startup and keep its registration valid (re-register after lease timer expiration). Since there can be more than one Lookup Service in a Jiro domain (which in JIMS approach typically covers one computing cluster), a fair level of failure safety is provided. The Lookup Service acts also as a repository of proxies used to communicate with registered objects. By downloading such a proxy from the repository, a client does not even have to know the communication protocol it is using (the proxy hides the protocol details). Such functionality, although convenient, is not always needed, especially in homogenous and low‑level environments, i.e. environments with many objects that are speaking the same protocol and are of little use to an end user. Therefore, although Jiro Lookup Service is used by the first prototype of JIMS, it is possible, that future releases will switch to active discovery mechanisms.

The active discovery mechanisms rely heavily on network multicast/broadcast capabilities. Typically, an object that wants to discover other entities sends a query on a network’s multicast/broadcast address and then waits for responses sent by the services that match the query. In order to keep track of entities in place, the query is re-sent periodically. One drawback of such an approach is the requirement for the network to support multicast or broadcast communication
. That requirement is easily fulfilled by clusters (they form a single local network). That is enough for JIMS’s agent layer, because its database will connect directly only to the agents on the local network.

Mechanisms of active discovery are available in the Java Dynamic Management Kit (JDMK™) – a commercial implementation of JMX, but the freely available reference implementation of Java Management Extensions does not provide them [3]. That means that switching to active discovery would require implementing discovery from scratch or adopting it from some other technology.

4. JMX based configuration mechanisms

JMX based environments offer JMX M-let Service, which allows the agent, other MBeans, as well as management applications to create MBeans by downloading class files from remote locations. This service could be exploited to achieve easy configuration of the grid infrastructure monitoring system. In addition, the M-let Service lets agents expand their code base at runtime. Therefore, it could be considered as an attractive alternative to Jiro Deployment Station functionality.

Since the M-let Service is a core JMX component, it must reside in every JMX-compliant server. In order to load new MBeans, users point the service to a remote descriptor (M-let). The descriptor is an XML-like text file that contains information about loading classes and creating MBeans. The M-let service loads this file, processes the information it contains and downloads the named classes in order to create one or more MBeans. Figure 2 illustrates how the M-let service works. The M-let service downloads an M-Let File, which contains mandatory attribute specifying class name that contains MBean implementation. The only other mandatory attribute contains a single JAR file or a list of JAR files that contain the classes, objects and resources needed to support a specified MBean class or serialized object file.

[image: image2.emf]Web server

containing

the M-let

to be deployed

Management

console

MBean Server

Protocol

connector

M-let Service

MBean MBean MBean

(1)

(2)

(3) - download

(4) - instantiate

M-let service is also an MBean registered in the agent, and it can be used by the agent itself, other MBeans, or remote management applications. It supports loading of MBean classes and their resources from remote locations by using M-let files and acts as a class loader, providing the ability to expand an agent’s codebase.

5. Support for dynamic configuration

JMX specification [4] does not define any service supporting dynamic resource discovery. Such a service is offered by commercial implementation of JMX available from SUN Microsystems, called Java Dynamic Management Kit (JDMK). Because this functionality has been considered crucial for the grid monitoring system, the first prototype of JIMS has been implemented using JDMK classes implementing it.

The discovery service provides for discovering management agents in a network. That service relies on a discovery client object which sends out multicast requests to find agents. In order to be discovered an agent must have a registered discovery responder in its MBean server. Applications may also use a discovery monitor, which detects activation or deactivation of discovery responders.

The combination of these functionalities allows interested applications to establish a list of active agents and keep it current. In addition to knowing about the existence of an agent, the discovery service provides the version information from an MBean server's delegate and the list of communication MBeans that are currently registered.

The application containing the discovery client can initiate a search at any time. For example, it might do a search when it is first launched, and search again periodically for information about the communicators which may have changed. For each search, the discovery client broadcasts a request and waits for return information from any responders. There are two types of response mode:

· unicast response mode - the responder creates a datagram socket for sending the response only to the discovery client,

· multicast response mode - the discovery responder uses the existing multicast socket to send response, broadcasting it to the same multicast group as the request. Every member of the multicast group receives the message, but only the discovery client can make use of its contents.

In passive discovery, the entity seeking knowledge about agents listens for their discovery responders being activated or deactivated. When discovery responders are started or stopped, they send out a proprietary message that contains all discovery response information. A discovery monitor object waits to receive any of these messages from the multicast group
.

6. System operation

The communication between the agent layer and the upper layers of the system depends heavily on the user requirements and can be quite intensive. Therefore, either a low‑overhead communication mechanism must be used or the MBeans should be able to reduce the communication volume by e.g. filtering redundant messages.

Although the second solution seems to be attractive, it still does not guarantee that the rest of the system will not be flooded with messages while introducing an additional processing overhead on each monitored node and making the functionality of the MBeans more complex. That would be in contrast with the assumption of simplicity of MBeans. Because of that, although message filters cannot be omitted, JIMS does not implement their functionality inside agent layer. If the message filtering and aggregation functionality would be integrated into other system layer, it is more likely that the database layer would serve for this purpose.

In either case, a communication scheme best suiting the needs of communication should be chosen. The two possible alternatives for the first prototype of JIMS were Jiro Event Service or JMX RMI‑based communication. The Event Service is a standard service for Jiro environment. Being topic‑based, the service provides basic means for event filtering by structuring the event types in a hierarchy. Moreover, one instance of the service provide means for communication to the whole Jiro domain, so there is no need to install it on every single machine in the monitored cluster. On the other hand, JMX messaging with its filtering capabilities provides enough functionality for the agent layer entities. It is worth to say that the JMX filters can actually block sending a message to the network, which saves bandwidth and CPU power on the listener’s host [5].

7. Interoperability aspects

The investigated monitoring system is based on Java technology and exploits RMI for remote communication between system components and reporting monitored events. The interoperability with systems implemented in other technologies is provided via SOAP Gateway. The concept of this component follows OGSA guidelines which proposes Web Services as “glue” technology for future generation grids.

The SOAP Gateway is designed and implemented under Crossgrid Project. It exposes a functionality of monitoring system as Web Services and allows access to interfaces of MBean Server Agent services and monitoring MBeans via standard SOAP protocol. An important feature of SOAP Gateway is its auto-configuration mechanism. The Gateway actively or passively discovers all MBean Servers available in monitoring domain. This procedure exploits the discovery services described in Section 5. Such a solution makes the monitored resources list accessible from the Gateway consistent, even when grid nodes are temporarily switched off.

The Gateway translates SOAP RCP invocations on monitoring system MBeans to RMI invocations. Inside the Gateway each MBean server is represented by a proxy RMI connector. This solution guarantees that full functionality of each MBean Server could be accessed via SOAP Protocol.

Under Crossgrid Project the SOAP Gateway will be used for integration of JIMS with R‑GMA at the first stage. However, the proposed solution is far more general and could be used by any WS-enabled application.

8. Conclusions

The presented comparison study of Jiro Services and Java Management Extension lead to the conclusion that both environments pose very similar or at least replaceable functionality. Jiro environment seems to be more sophisticated and rather centralized as relaying on Jini Lookup Service. JMX is less centralized and lightweight what better satisfies scalability requirement of grid monitoring system.

Jiro Deployment Station and Lookup Service based system startup is more difficult in configuration and management in comparison to the JMX M-Let Service. The important point is that JMX implementation works reliably.

Jiro has more powerful and well designed Event Service implementing most of CORBA Event and Notification Service functionality. It provides rather general filtering capabilities in contrast to rather simple filtering and notification mechanisms available in JMX. This is not going to be a problem as event distribution layer represents separate well defined functionality which could be implemented with support of many existing open source events distribution tools.

Jiro environment has still many drawbacks and seems not to be supported in the future. Thus, structuring JIMS around JMX would guarantee easy migration of the system from Jiro services to JMX services without compromising any functionality of the monitoring system developed in the first phase of Crossgrid Project.

References

[1] Crossgrid Project Deliverable 3.2, www.crossgrid.org/ Deliverables/M12pdf/CG3.3.3-D3.2-v1.0-TCD100-JiroMonitoring.pdf

[2] Crossgrid Project Deliverable 3.3, http://www.crossgrid.org/Deliverables/M12pdf/CG3.3.3-CYF-D3.3-v1.1-Jiro.pdf

[3] Java Dynamic Management Kit Technical Overview, http://www.sun.com/products-n-solutions/telecom/software/ javadynamic/tech_overview.html

[4] Java Management Extensions Specification, http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

[5] H. Kreger, W. Harold, L. Williamson, Java and JMX. Building Manageable Systems, Addison‑Wesley, 2002, pp. 120‑122

Fig. 2. The M-let service operation

Fig. 1. An example JIMS startup configuration.

Legend:

CE 	– computing element

SE 	– storage element

WN 	– worker node

	– MBean

�Domain Server runs core Jiro services; other hosts run only the Jiro Deployment Station.

� That requirement is also present when using Jiro-based approach, since the instances of Lookup Service are found by sending a query to a well-known multicast address. The workaround is to preconfigure the system entities with address of a Lookup Service instance compromises the system’s failure safety.

� A discovery monitor is often associated with a discovery client. By relying on the information from both, it can keep an up-to-date list of all agents in a given multicast group.

