Sławomir Zieliński

Department of Computer Science

University of Mining and Metallurgy

slawek@cs.agh.edu.pl
SURVEY OF NATURAL SPEECH PROCESSING ENVIRONMENTS

1. Introduction

The dynamic growth of desktop and home computers’ capabilities has been making it possible to develop user interfaces anyone can use with paying less and less effort. The time, when the only way to communicate with computer system was to prepare special perforated cards can now be considered as a stoneage, but nowadays people are still used to use special appliances to exchange information with the computer systems, for example mouse, touchscreen, keyboard. Although they are much easier to use than the perforated cards or sets of switches, still there is a need of learning how to communicate with the machine. Using the sets of menus, buttons, dialog boxes or other graphical user interface elements can be difficult especially for
people with disabilities.

The most frequently used way of interpersonal communication is a spoken language. Thus, to create the feeling of natural human-computer conversation, the machine has to be able to understand at least simple spoken commands (preferably sentences) and to compose spoken answer. There are some applications, where this feature is almost necessary (e.g. navigation systems), and some where it helps a lot performing schematical tasks. As an example of the second category, one could consider a conversation between a secretary and client, who wants just to get phone-connected to somebody working in the secretary’s company, but does not know the internal phone number. The answers for typical questions, such as „Who do you want to talk to?” could successfully be produced by an automate connected to a phone-numbers database and able to understand
employee’s names.

The accessibility of the information has been dramatically increased by the development of worldwide computer network. Even though Internet has proved to be the fastest way of knowledge exchange, for people, who do not use computer every day it is quite hard to find some information on specific topic. Anyone who wants to get an answer on specific question has to know what is the WWW address of a search engine, how to make the engine look for the interesting information and so on. This person cannot just ask a question to his or her home computer and have the whole schematic work done. In the future, when voice-driven interfaces come
1. into everyday life, performing tasks of this kind will cost much less effort.

In the last few years, there could have been observed a rising interest in developing speech processing applications, especially due to the possibility of voice-controlled systems implementation for personal uses, such as telephone services or car navigation systems. There are many software development packages meant for handling voice input and output. Some of them will be discussed in more detail later in this article.

One of the most important aspects of speech-enabled environments is allowing greater computer systems accessibility for the users with disabilities, for whom it can be the only way to use personal computer.

2. 2. The basic categories of speech services

The user of the speech processing systems is offered two general types of services: automatic speech recognition (ASR) and text-based speech generation (text to speech, TTS). There are many applications of those services, beginning with speaker identification system guarding the company’s resources, through systems designed for people with disabilities, such as a computer-driven phone, ending with a simple email reading application.

3. 2.1. Text to speech service

Converting text to speech is not as easy, as it looks like. A good quality statement-based speech generator has to recognize the structure of the comment it is to speak out in order to prepare the output that sounds naturally. If the application is a real-time one, time is also an important issue. The TTS converter at first has to find the paragraphs, statements, consider the punctuation and use this information while deciding which word to put stress on and what the intonation of the whole sentence is going to be like. Then it is going to preprocess the text to interpret specific constructions, such as abbreviations, dates, sums etc. Having all those tasks completed it is ready to convert text to human speech sounds.

The basic elements of each spoken word are called phonemes. They are the simplest sound a human can generate. The number and shape of these sounds varies depending on the speaker language, or even on the region he or she comes from (a good example can be English spoken by the American and Scotch people). There are also different types of phonemes
. But spoken language is not only a set of the basic sounds. While talking, people use also diphones (sounds that affect two following phonemes) and triphones. Nowadays there are a few software products available that are trying to undertake the complexity of these sounds.

It is clear, that every step of this simple algorithm scheme can take a lot of processor’s time and could be the source of errors. It can happen especially when the program has to guess how to treat a sentence, which does not match any pre-programmed pattern or when there is a need to say the word that is not included in its dictionary. There are also many ambiguous situations – one of the simplest examples is the date 12/1/99. Good quality text-to-speech program has than to know some facts about the statement contents and context (for instance, how the writer usually notes the date). These considerations lead to a conclusion that good TTS system cannot exist without additional knowledge, which can be either static – given to the system during design and implementation – or dynamic, when the designer decides to connect it with some artificial intelligence system(s).

Human ears are very well tuned to detect errors in each of the steps described above. It takes then very much effort to design and implement a system that offers a good synthesis quality.

4. 2.2. Automatic speech recognition

What is most interesting about speech technology is making the computer understand spoken commands. It could give plenty of possibilities not to have to use keyboard, monitor or appliances like that to operate computer system. Car navigation system can be a good example of such application.

The speech recognizers are far more complicated systems than generators. It is so for at least two reasons. The first is that voice (signal) processing is far more complex than text processing, and therefore analyzers need more complex (better both in quality and efficiency domain) algorithms than generators. The second is that voice signal comes along with noise, which can interfere (or even prevent) the reception of the signal, and which should be filtered off (the text has no noise at all). The source of the noise can be either a street nearby, or someone closing the door, or even the user, who improperly sets the microphone. A spoken phrase signal has also an irregular structure, contains variable-length silence periods, depends on the speaker diction, etc.

There are two types of speech recognizers – the discrete and the continue ones, depending on whether they cooperate with person, who is expected to give the system very short answers or commands (e.g. „Yes”, „No”, „End call”) or whether the user wants to have the possibility to tell the computer a full sentence (e.g. speech recognizers designed to handle continue dictation).

The other distinction is between speaker-dependent or independent recognizers. Most of the currently available speech environments have the possibility to train themselves in order to achieve maximum accuracy. This ability is a great advantage for desktop systems, when after installing the software only one person is expected to use it. Thus, in order to have maximum performance in specific domain, one should decide whether to purchase a speaker-dependent or independent, discrete or continue speech recognizer.
3. Controlling the speech services – algorithm schemes, control mechanisms, error causes

The control mechanisms of speech-enabled environments can be divided into two groups: the configuration-based and programming ones. The configuration mechanisms often consist of some system training tools and programs setting up some parameters. The programming interfaces allow more flexibility, but of course, it costs much more effort to use them. Both the text-to-speech and automatic speech recognition systems have their control mechanisms.
5. 3.1. Maintaining a speech generator

·
Speech generation algorithm has been described in the earlier part of this article. As mentioned above, during the generation process a system pass some steps that can produce error output. The most common types of TTS system errors are:
· incorrect end-of-paragraph guess – happens for example, when the recognizer considers the dot following an abbreviation as the end of a paragraph,

· incorrect behavior in ambiguous situations, such as date reading,

· incorrect guess of the way to speak out a word that is not in the dictionary,

· incorrect sentence melody,

· mechanically sounding sound wave output.

Some of the speech synthesizer programming interfaces can help a developer address these errors. They currently don’t allow, however, the programmer to express the emotional state of the speaker, specific accent and other human language features, so the user still has to pay more attention to understand the speech produced by a machine.
6. 3.2. Controlling an automatic speech recognizer

A typical automatic speech recognition algorithm performs the following steps:
· grammar definition – includes words and sequences definitions,
· spectral analysis of the input signal,
· phoneme recognition – convertion from sound wave to a sequence of basic speech sounds,
· word recognition – determining, whether the phonemes form a word from vocabulary,
· result generation – best solution presentation.

Most of the currently available speech recognition systems allow the user to set the grammar of the commands the system will be used to understand and store it in recognizer-dependent format. Usually this can be done using a special grammar definition language. As an example consider a simple grammar written in JSGF (Java Speech Grammar Format):

[image: image1.png]

#JSGF V1.0;

// Define the grammar name

grammar FileCommands;

// Define the rules

public <Command> = [<Polite>] <Action> <Object> (and <Object>)*;

<Action> = compress | delete;

<Object> = the file | the directory;

<Polite> = please;
Example 1. A simple static grammar example.

The grammar presented in the example 1 is a pre-set, static one. In real life, there is often a need to modify the grammar without stopping the recognizer. The dynamic grammar support is not a standard feature of all the speech-enabled software, but some of the products can handle this.

When using grammars as mentioned above the designer has to specify all the language rules that are going to be used in conversation with the ASR system. That is why grammars of this kind are called rule grammars. Grammars of this kind are not very natural, but simple and easy to understand for the machine. This is especially important for those applications, which do require high accuracy, but don’t need to let the user speak fluently into the microphone.

The other way to let the computer have some knowledge of human language is constructing a dictation grammar. Performing statistical training on large amount of text is the way to achieve this effect. The most important advantage of grammars like these is that they allow the user to speak more naturally, with much less restrictions on the sentences. This virtue is paid with having much more complex grammar and, consequently, with the need to have higher quality audio hardware.

The acoustic input signal is sampled at a rate between 6.6 kHz and 20 kHz to produce sequence of vectors called parameters. They are computed every 10 or 20 msec. The output of this process can be produced in a form of spectrogram, as presented in the figure 1.

[image: image2.png]

Figure 1.
A spectrogram of the word “compute”. The vertical axis represents frequencies, the horizontal – time, the colors – energy (computed using Fourier analysis).
Source: http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/spectrogram.html
·
The next stage of the process is to form a sentence of phoneme- and word hypotheses. There are two general approaches to solve this problem: the neural networks approach and the statistical one. As an instance realization of the second speech recognition algorithm step the following is a brief description of the second approach. When using statistical methods, the production of word hypotheses is based on acoustic and language models. A sequence of acoustic parameters is a realization of a concatenation of stochastic processes described by a Hidden Markov Model, which is a composition of two stochastic processes accounting for temporal and spectral variability, respectively. This combination has proven to be powerful and flexible enough to allow the realization of speech recognition systems with dictionaries containing thousands of words. The basic elements of the HMM are:
· the two processes (X and Y) from which only one (Y) is directly observable,

· set of transition probabilities A={aij},

· set of output distributions B={bij},

· set of initial probabilities N={ni},

where:

· i,j – variables representing model states,

· y – variable representing observations,

· aij = p(Xt=j | Xt-1=i),

· bij(y) = p(Yt=y | Xt=j, Xt-1=i),

· ni = p(X0=i).

Language models are defined in a similar way (such a model can consist of word transitions instead of phoneme transitions, etc.). The combined models form a large automaton that grows both with the dictionary size and grammar complexity. That is the reason why dictation grammars require more computational power than the rule-based ones.

The last step of the ASR system algorithm is best solution presentation. There are always some guesses available, each with different probability determined by the automate described earlier. For complex grammars there is no 100% certain solution, which fact stems from the automate probabilistic character.

As a matter of fact the possibility to modify the grammar is the main (often the only) control mechanism of ASR systems. The grammar complexity is one of the main factors affecting the system performance. Due to the reasons described before, the more kinds of sentences it consists of, the worse the performance is. Thus, while designing the grammar for the recognizer, there is always a trade-off between recognition quality (accuracy together with system requirements and performance) and ease of use for the people.
· Some of the other factors affecting recognition quality are:
· the quantity of similarly sounding words – the construction of the dictionaries is also a part of very much importance for the speech services quality; sometimes it is better not to let the user have too much freedom and to bound him or her to a specific set of words, especially when working on a very specific topic. Some of the speech processing environments have the tools to build dictionaries designed for particular problem. For some of the software packages, there are ready-made „topic dictionaries” – focusing on specific terminology rather than on ordinary sentences.

· user’s diction – either faint diction or non-typical voice makes it harder to understand the phrase,

· hardware quality – low quality hardware could generate additional noise interfering the spoken input. The hardware does not only mean sound or DSP card, but also the user equipment, such as a microphone or telephone. For example, echo cancellation is frequently required feature of the microphone, which is going to be used for human-computer conversation.

Due to the high hardware requirements and background noise vulnerability, speech-enabled environments cannot be applied in every case. It is not a good idea to design a voice-driven system, which operator has to talk to someone else while working with the system, or when the system produces large amounts of data the user is to compare. Of course, working with a speech-processing system in a noisy environment is useless. There are also security risks connected with speech technology. Entering spoken secret data or generating spoken output containing secured information brings up the risk to be eavesdropped.

On the other hand, there are applications where speech-based systems are going to become the best solution. When the user does not want to have to look at the screen and wants to have his or her hands free, the speech-driven software is the best solution. Such situations can happen for example, when driving a car in a crowded city and having to use satellite navigation. In a case like this, speaking interface seems to be the most suitable solution.

The errors the speech recognition suffers from can be divided into three groups. The most common mistakes are the cases when the recognizer misinterprets the audio input and generates word other than the one actually said by the operator. They often are a result of user’s faint diction or strong regional accent, loudy background, low quality of audio hardware. This error type is simply called misrecognition. It can also be caused by a confusable grammar. The other kind of errors is misfire. It happens when the ASR system tries to recognize a non-word sound (like a snap) as a proper input. The last kind of errors is rejection. It is the case, when the user speaks a word that is not in a dictionary.

7. 4. Creating speech-enabled solutions – software environments’ capabilities, API’s and hardware support

Most of the speech processing packages can be equipped with suitable Application Programmer’s Interfaces or other development tools. As the Microsoft® Windows™ platform is currently the most popular for desktop and home computers, most of the speech software vendors offer ActiveX controls to incorporate in custom applications. Microsoft Speech API seems to be the most popular speech processing API so far. The new standard that emerges is the Java Speech API, the result of cooperation of IBM®, Sun Microsystems and some other parties. Table 1. contains the specification of the programming capabilities of selected speech environments. It also mentions the system platform and presence of ASR/TTS modules.
Table 1. Selected products’ functionality, supported platforms and software interfaces.

Product name
System platform
Functionality
Implemented API’s
or other development tools

IBM ViaVoice
MS Windows, Linux
ASR, TTS
Microsoft SAPI,
Java Speech API,
ActiveX, SMAPI
,

Dragon
NaturallySpeaking
MS Windows, UNIX
ASR, TTS
Microsoft SAPI,

ActiveX

Entropic TrueTalk
MS Windows, UNIX
ASR, TTS
HAPI
, HTK

CSLU Toolkit
Windows
ASR, TTS,
facial animation
RAD

L&H
VoiceXpress
Windows
ASR, TTS
Microsoft SAPI, ActiveX,

some L&H API’s

8. 4.1. Java Speech API

·
The Java Speech Application Programmer’s Interface is an “open API”, which means that it is to be implemented by a software manufacturer. It defines cross-platform, easy to use speech environment programming interface. The main features of the Java Speech API are:
· support for both command-and-control and dictation recognizers,

· it forms a cross-platform and cross-vendor interface to speech recognition and synthesis,

· it is simple and easy to learn,

· it does not have any hardware requirements.

This API provides a method to improve speech output quality. The higher quality can be achieved using Java Speech Markup Language (JSML). The elements of JSML provide the ability to markup the start and end of the paragraph, ability to specify pronunciations of any word, acronyms, abbreviations, etc. It does also allow controlling speech parameters as loudness, pauses etc. explicitly.

The Java Speech API is monolingual – a speech recognizer that supports this API is expected to support only a single language. The API does not allow concurrent input streams processing. To make things better, it supports both static and dynamic grammars and provides the application with a set of recognizer properties that reflect the engine state.
·
The recognition and synthesis engines are provided an abstract representation – the javax.speech package. The subpackages, javax.speech.synthesis and javax.speech.recognition apply to the distinct types of speech services. The usage scheme is similar for both kinds of engines. It consists of the following steps:
· identification of the application requirements (e.g. language),

· localization of the engine that meets the specification,

· allocation of the resources needed by the engine,

· setting up the engine,

· using the engine,

· deallocation of the reserved resources.

A simple application using Java Speech API is presented in the example 2.
[image: image3.png]Toua Sus

s w
o o Secoty Ky,
A s —{eermom
0031
5 s e
! M)
ok
agcs s L]
53
sca00
e
—] ool
e s -
2563 o
aagen s Gioba

RSaues

import javax.speech.*;

 import javax.speech.synthesis.*;

 import java.util.Locale;

 public class HelloWorld {

 public static void main(String args[]) {

 try {

 // Create a synthesizer for English

 Synthesizer snt = Central.createSynthesizer(

 new SynthesizerModeDesc(Locale.ENGLISH));

 snt.allocate(); // allocate the resources

 snt.resume(); // set up the engine

 // Speak some sentence

 snt.speakPlainText("Hello, world!", null);

 // Wait until the engine finishes speaking

 snt.waitEngineState(Synthesizer.QUEUE_EMPTY);

 // Clean up

 snt.deallocate(); // free the resources

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

Example 2. A simple “Hello, world!” application (based on the example covered in Java Speech API Programmer’s Guide, chapter 4).

The set of properties defined by this API allows selection of engine language, voice type (e.g. adult or child) and some other details about the support needed by an application. Furthermore, the application can gather a list of available speech services (for example, to let the user choose some of them). The list can be ordered by specified requirements match rate or in other manner.

Each of the engines supporting the Java Speech API at any time is in one of predefined states, allowing the application to check what it is currently doing. The states are especially useful when some applications share a speech engine. The possibility to share the underlying system can have some impacts on the programs’ performance.

From a programmer’s point of view, the Java Speech API offers some interesting extensions, which does not have to be implemented in a speech engine. An example of such functionality is vocabulary management, which task is performed by a VocabManager. This class maintains a set of words – objects containing human language word in written and spoken forms, the grammatical category and pronunciation. The Java Speech API is still evolving and is expected to cover more issues in the future.
9. 4.2. Microsoft SAPI
·
The Microsoft Speech Application Programmer’s Interface is a set of Component Object Model (COM) interfaces. The SAPI Model is divided into two levels:
· high-level SAPI, which provides an access basic speech services,

· low-level SAPI, which supports the manipulation on both ASR and TTS behavior attributes.

The high-level SAPI is especially good for programming simple speech-driven interfaces, such as voice-activated menus, buttons, etc. It is also sufficient for maintaining basic speech output. Looking at an example one can see this API simplicity. Let say, the programmer wants to enrich his or her application by adding some speech features to the interface. If the one wants to create a voice-driven menu, he or she is going to use one of basic objects provided by this API - Voice Command (depicted in figure 2). It has one child (Voice Menu); objects of that type can be grouped using dedicated collection object.

Figure 2. The Voice Command and Voice Menu objects

(source: http://www.itlibrary.com/reference/library/0672309289/f15-1.gif).

The Voice Command interface is used not only for creating, deleting and enumerating voice menu objects, but also to register the application to use the speech recognition engine. The control over the engine (when using the high-level SAPI) can be achieved using the Attributes interface. It can be used for enabling or disabling voice commands, establishing the engine mode and controlling the input device (e.g. telephone). There are also some simple objects for maintaining spoken output. A program to register for using the TTS capabilities can use the Voice Text interface. This interface also provides an access to simple spoken output manipulation (start, stop, fast forward, ...).

The low-level Speech API gives the programmer more possibilities. It is intended as a method to implement advanced speech-enabled applications, even dictation systems. Just as in the case of high-level API the offered services can be split into two categories: speech recognition and generation. There are also two main interfaces, one for each kind of services. The API object supports selection of available speech recognition engines, sharing the engines with other applications, grammar creation, etc. There are also plenty of possibilities to adapt the TTS engine(s) mode to the application-specific demands.
10. 4.3. Extending speech recognition/synthesis system capabilities using specialized hardware

There are some hardware products designed to support speech services. They are particularly useful when used for applications that require large amount of computational power (for example for handling three telephone calls at one time). A good example of such specialized DSP hardware is Dialogic Antares platform (see figure 3). It is developed for medium- and high-density or multiple technology telecommunication applications. It contains four independent floating-point digital signal processors. It is compatible with the applications based on SC Bus.
There are some systems (produced, for example by Lernout&Hauspie) that benefit from the support provided by this card.

Figure 3. The Antares Board functional block diagram (source: http://www.dialogic.com).

The hardware requirements for personal or office use are not high comparing to current PC standard. Some of the speech-enabled systems can be deployed using even a machine with a 486/33 processor and 1MB of RAM. The minimal requirements depend on the type of service the user is going to be offered. Table 2 contains a short summary of minimal hardware requirements for distinct types of services. It could seem, there is no problem to meet them. However, the recommended hardware depends on the tasks the system is to handle and a reasonable speech-enabled workstation could be equipped with a Pentium 100 or higher at least 32 MB RAM.
Table 2. Minimal hardware requirements of selected types of speech services.

Speech recognition service type
Processor
Additional RAM

Discrete, speaker-dependent,

whole word, small vocabulary
386/16
64 KB

Discrete, speaker-independent,

whole word, small vocabulary
386/33
256 KB

Continuous, speaker-independent,
sub-word, small vocabulary
486/33
1 MB

Discrete, speaker-dependent,
whole word, large vocabulary
Pentium
8 MB

Continuous, speaker-independent,
sub-word, large vocabulary
RISC
8 MB

Source: http://www.itlibrary.com/reference/library/0672309289/ch16.htm

The factor that mostly affects the system requirements is the vocabulary size. That is the reason, why there are two matching approaches – whole word matching, which is quick, but can require extremely large vocabularies, and sub-word matching, which is more complex process, but saves on the vocabulary size. Phoneme matching is an example of the second approach
.

11. 4.4. Interesting extensions provided by software manufacturers

The human-machine communication is not just a matter of speech synthesis and recognition. The emotional states, which cannot be expressed in synthesized speech, can be shown in other – more traditional – ways. An interesting example is Baldi – facial animation module included in the CSLU Speech Toolkit – which can be synchronized with the spoken output.

Other vendors provide tools for designing vocabularies specialized in some topic, or even offer some topic-related ones as a separate product. These tools operate not only on whole words, but even on phonemes. Each API is, of course, provided a set of demonstration programs.
5. Conclusion

The human-computer interoperability is going to be improved in near future by making the computers able to understand spoken human language. The available speech processing environments abilities allow the programmer to improve his or her application easily. Nevertheless, the choice of one particular product depends on the customer’s requirements, because the unified interfaces make the different product seem similar from the programmer’s point of view.

12. Bibliography:
13. JavaSoft website http://www.javasoft.com

14. Microsoft Research website http://www.research.microsoft.com

15. Speech Solutions website http://www.speechsolutions.com
16. IT Library website http://www.itlibrary.com/reference/library/0672309289/index.htm

17. Java Speech API Programmer’s Guide, Sun Microsystems, 1998

18. Center For Spoken Language Understanding (Oregon) website http://cslu.cse.ogi.edu
19. Dialogic Company website http://www.dialogic.com
20. Lernout & Hauspie website http://www.lhs.com
21. Dragon Systems website http://www.dragonsys.com
22. Entropic Company website http://www.entropic.com

� The complete set of English language phonemes can be viewed at: � HYPERLINK http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/ipa/ipahome.html ��http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/ipa/ipahome.html�

� The SMAPI has been designed by IBM.

� The Linux version implements only the IBM SMAPI.

� These API’s are available only for the Windows version.

� This API is designed by Entropic.

� Hidden Markov Model development toolkit.

� Each phoneme requires between five and twenty bytes to be stored into. A word that is not encoded as a string of phonemes can take up to 512 bytes.

�PAGE \# "'Strona: '#'�'" ��Coś o algorytmie TTS.

�PAGE \# "'Strona: '#'�'" ��Jakiś inny spektrogram.

